
Model : KTE-3000HD 4-WAY REVERSE VALVE CONTROL HEAT PUMP HEATING & COOLING EXPERIMENT EQUIPMENT

Korea Technology Institute of Energy Convergence Korea Technology Engineering Co.,Ltd.

1. He	eat pump Refrigeration Experiment Equipment
	1. System Description of 4-Way Reverse Valve Heat Pump Training Equipment
	2. System cycle and Measuring device for temp.& pressure
	3. Mechanical refrigeration device component
1-	4. Control panel device component
	Chapter 2. Component of an Heat pump cooling & heating apparatus
	echanical device component ······
2. Au	Itomatic control device component
	Chapter 3. Construction and Operation as circuit
1. Pra	acticing to configurate circuit using contact point "c" of Ry device
	acticing to configurate circuit using contact point "c" of Ry "a","b" of
m	agnet contactor(MC) ······
	acticing to configurate self-holding circuit for priority STOP of
sta	andard refrigeration system
	acticing to configurate circuit for low temperature control using
а	temperature switch
	acticing to configurate circuit for low pressure control(LPS) using
	pressure switch.
	onfiguration circuit reversing refrigerant flow direction for
	neat pump refrigeration system"and operation.
	onfiguration manual control circuit for
"с	ooling and heating heat pump refrigeration system" and operation.
	Chapter 4. Experimental and Using DA100
4-1.	Install and how to use KTE-DA100
4-2.	Drawing a P-h diagram (Coolpack)

1. Mechanical troble and measure 81

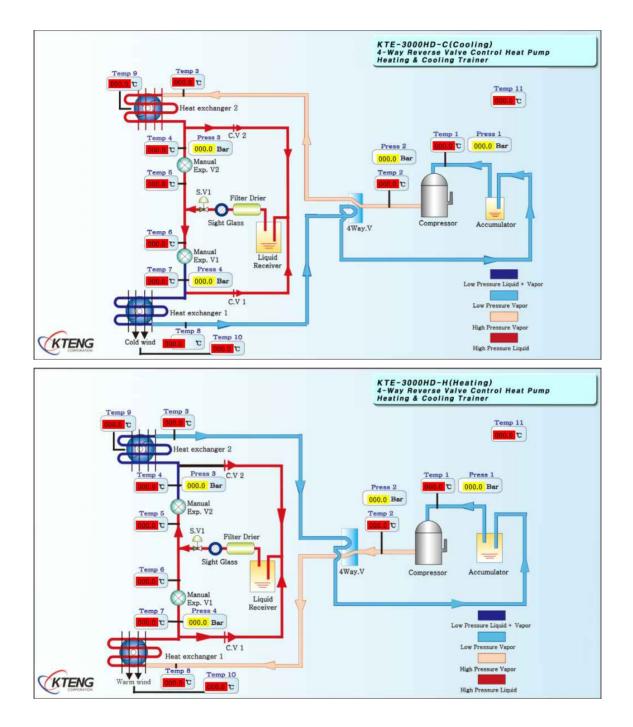
Chapter 1. Description of an Heat pump cooling & heating apparatus

1. Heat Pump Refrigeration Experiment Equipment

1-1. System Description of 4-Way Reverse Valve Heat Pump Training Equipment

1. CONTROL PANEL : Comosition with N.F.B, Toggle Switch, $Am \cdot Vm$ meter, Buzzer, Lamps(Red, Green, Orange), High \cdot Low Pressure Switch, Magnetic Contactor, Relays, Thermal Switch, Push Buttons, Power Input, these devices make the refrigeration system run by several electric circuit.

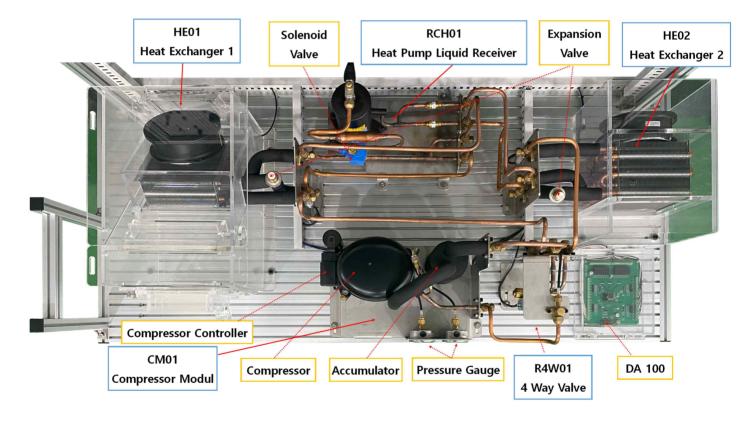
2. MECHANICAL REFRIGERATION : Composition with Compressor, Condenser(with fan motor), Receiver, Filter-dryer, Sight glass, Solenoid Valve, Manual expansion Valve, Evaporator(with fan motor), Reversing Valve, Accumulator, High · Low pressure gauge, Check Valve, etc, these devices run as set up circuit in Control panel.


3. SOFTWARE P/G : KTE-DA100(Software) supply tools with that temperature, pressure, enthalpy, amount of the exchanged heat in each position can be measured in real time, and then saved by Microsoft excel, so that the saved data can be show and analysis by graph.

4. HARDWARE PCB : Composition with KTE-DA100(Hardware), PC(over than Pentium4, Window OS 98, Memory 256M, Hard space 100MB),S.M.P.S, 9 of T-Type Thermo couple, and 4 of Pressure sensor, these devices let all of data from system as like temperature, pressure, enthalpy, amount exchanged heat in each position, and COP acquisited to software at PC.

1-2. System cycle and Measuring device for temp.& pressure

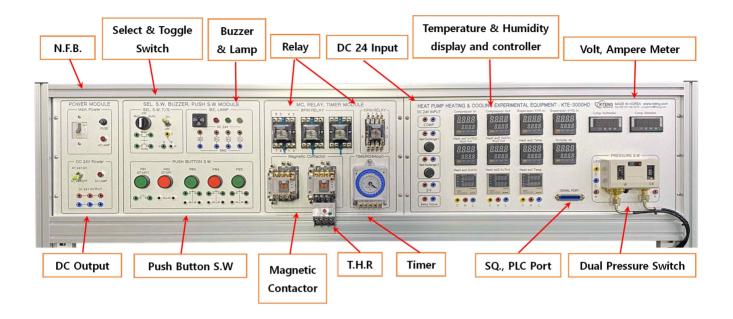
(1) Cycle diagram of Heat Pump Heating & Cooling Refrigeration system



(2) Temperature, Pressure position for measurement in Heat Pump Heating & Cooling Refrigeration system

Measuring point	Remark
Temp 1, Press 1	Compressor in
Temp 2, Press 2	Compressor out
Temp 3	Condenser in(Cooling), Evaporator out(Heating)
Temp 4, Press 3	Condenser out(Cooling), Evaporator in(Heating)
Temp 5, Temp 6	Expansion Valve in
Temp 7, Press 4	Evaporator in(Cooling), Condenser out(Heating)
Temp 8	Evaporator out(Cooling), Condenser in(Heating)
Temp 9, Temp 10	Evaporator Room Temp.

1-3. Mechanical refrigeration device component


- 1 Compressor
- 2 Compressor Controller
- ③ High Pressure Gauge
- 4 Low Pressure Gauge
- (5) DA100 Hardware
- 6 Expansion Valve 1
- 0 Heat Exchanger 1
- \circledast Heat Exchanger 2

- 9 Expansion Value 2
- 10 Solenoid Vave
- ① Sight glass
- 12 Filter drier
- 13 Receiver
- ① 4 way valve
- 🚯 Liquid seperator

5

1-4. Control panel device component for Heat Pump

- 1 Main Power
- 2 DC 24V Power & Power Lamp
- ③ Select Switch & Toggle Switch
- ④ Buzzer & RL, GL, YL
- ⑤ Push Button
- 6 8 Pin Relay
- ① 11 Pin Relay
- 8 T.H.R
- 9 Magnetic Contactor
- 10 Timer
- ① DC 24V Input
- 1 36 Pin Connector
- (3) Temperature Indicator
- (4) Temperature Indicator & Controller
- (15) Comp Am, Vm
- (6) Pressure Switch

6

Chapter 2. Component of an Heat pump cooling & heating apparatus

1. Mechanical device component

(1) Compressor

* Specification

- Model : P-12TN(ACC)
- 1/3HP
- Range : Medium, High temperature
- Eva Temp. : -25℃~10℃
- Motor Type : CSR
- Refrigerant : R-134a
- Single phase 220V, 50-60 Hz
- Controller

The motor compressor absorbs heat from an object in the evaporator of the standard refrigeration test equipment, increases the pressure by compressing the vaporized gas refrigerant at low-temperature and low-pressure and reduces the distance between molecules. Then, it increases the temperature and thus makes the gas easily in the condenser at the room temperature. That is, it sends the heat from the evaporation of refrigerant at the low heat source(evaporator) to the superheat source(condenser) at the high temperature and pressure.

(2) Charging Nipple

The charging nipple is the requisite to use the manifold gauge for the airtight and vacuum tests and refrigerant filling and transferring of the standard refrigeration test equipment. It is attached to the low and high pressure ducts on the mechanical compressor output and input sides. Before soldering the charging nipple to the high and low pressure ducts on the compressor output and input sides, the internal rubber(for keeping the airtight state) ring is removed and set again after refrigeration.

(3) Liquid Receiver

Refrigerant that flows from condenser stays at a receiver before it goes expansion valve. The amount of staying refrigerant at a receiver must be constant for control refrigerant amount emitting into an evaporator. And also it need for recharging (pump down operation) when its repair.

(4) Filter Drier

Any moisture or impurities that exist in the refrigerants have a variety of negative impacts on the refrigerators. Then, the filter drier removes moisture or impurities. It is installed between the expansion valve and the receiver.

(5) Solenoid Valve

The electronic valve for main duct controls the refrigerant flow as it is opened or closed depending on the power input. It is connected to the temperature switch in series during the pump-down operation. In this case, the pump-down operation is processed by the opening or closing of the electronic valve for the main duct according to the closing or opening of temperature switch contact.

(6) Expansion Valve

The manual expansion valve insulates and expands the high temperature and pressure liquid refrigerant to the low temperature and pressure liquid refrigerant for easy expansion in the expander. The condensed and liquidized refrigerant is rapidly discharged from the narrow side to the wide side(crossing action) and starts the evaporation because the pressure is removed. Moreover, the volume of refrigerant is properly adjusted for the absorption of sufficient heat in the evaporator.

Manual Expansion Valve

8

(7) Heat Exchanger and Fan Motor

The evaporator performs the heat exchange activity to directly achieve the refrigeration goals as the low temperature and pressure liquid refrigerant from the expansion valve absorbs the latent heat of evaporation. The evaporator absorbs the latent heat of evaporation from the low temperature and pressure liquid refrigerant from the expansion valve to directly refrigerate an object(copper duct aluminumpinair).

(8) High Pressure Gauge

This device is for measurement of refrigerant pressure behind of compressor, liquid type high pressure gauge. Range is $-1 \sim 35$ kgf/cm2.

(9) Low Pressure Gauge

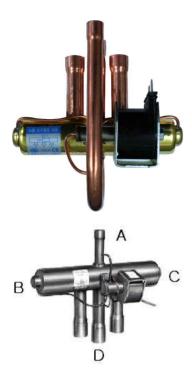
This device is for measurement of refrigerant pressure front of compressor, liquid type low pressure gauge. Range is -1 \sim 20kgf/cm2.

(10) Sight Glass

A sight grass that is for indication of refrigerant charging level and status with direct and simple way is available to HFC, HCFC, CFC family with no matter within -50° C $\sim +80^{\circ}$ C. Overcharging of refrigerant makes lubricating oil happening bubble, compression liquid, so that it makes an accident sometimes. For protecting this, through an installed sight grass refrigerant should be charged suitable.

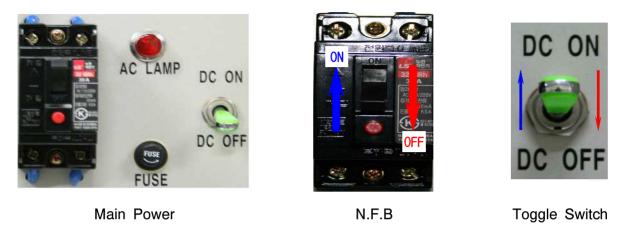
(11) Liquid Separator

Accumulators have been used for years on original equipment. More recently they have been field installed. The significance with respect to accumulator and system performance has never been clarified. Engineers have been foreced to evaluate each model in terms of the system on which it is to be applied. Application in the field has been primarily based on choosing a model with fittings that will accommodate the suction line and be large enough to hold about half of the refrigerant charge.


There is no standard rating system for accumulators. The accuracy of rating data becomes a function of the type of equipment used to determine the ratings. Some data is now available to serve as a guide to those checking the use of an accumulator.

(12) Check Valve

Some refrigeration systems are designed in which the refrigerant liquid or vapor flows to several components, but must never flow back through a given line. A check valve is needed in such installations. As its name implies, a check vavle checks or prevents the flow of refrigerant in one direction, while allowing free flow in the other direction. For example, two evaporators might be controlled by a single condensing system. In this case, a check valve should be placed in the line from the lower temperature evaporator to prevent the suction gas from the higher temperature evaporator.



4way valve doesn't basically work when the pressure is not connected with high or low pressure. Surely Solenoid valves that control the direction work as signal, but real no there is any change direction inside its. In other words, its are designed to work under high or low pressure. as seeing the fig. its solenoid valves are connected with cross way A,B,C, and D. Inside 4way valve body there is a cab that has a size available to connect between line D and a line of right side or left, and designed to be shift right and left. Its principle is (In the fig. of 4way valve, A side is high pressure, D low.); when refrigeration cycle runs, if line A-B and line C-D opened by solenoid valve, line B becomes high pressure, line C Low, so that the given cab sticks to line C by different pressure. Then line A-B and C-D inside 4way valve become float line. On opposite way, when A & C, B & D are connected with each other, line A-C, B-D become float line, and then the flowing direction changes inside it.

2. Automatic control device component

(1) Main Power (N.F.B)

The over current breaker(N.F.B) protects the compressor motor, fan motor of condenser or evaporator or wires of the refrigeration training equipment from the over current due to overloads or short circuit. The circuits are automatically cut out so that the equipment stops operation. It is not required to replace like a fuse if any cutout is occurred. The power can be immediately and easily reentered just using a handle. After connection between equipment and power line, for flowing of current a NFB is used, and then a AC LAMP will be on. And also if a Toggle switch is on, a DATA LOG device is on.

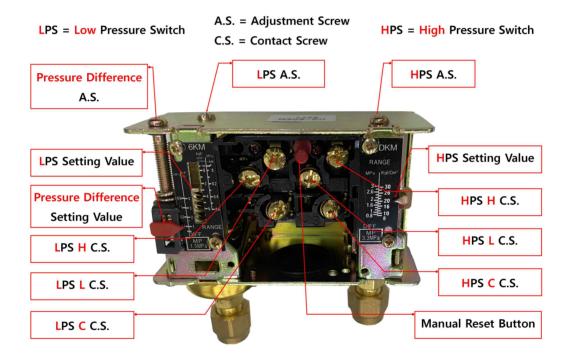
(2) DC Volt Meter and DC Ampere

1. This device installed equipment in measures Voltage by DC.

2. This device installed in equipment measures current by DC.

(3) Buzzer

The buzzer and alarm lamp display the abnormal status when a thermal relay and safety devices(H.P.S) are working. That is, the alarm lamp is more effective than the buzzer in the noisy places and the buzzer is more effective than the alarm lamp for the color blind operators in the quiet working places. Using both the buzzer and alarm lamp will be ideal.



(4) Lamp

The power lamp(P.L) is on when the power is connected and the operating lamp (G.L) is on during the operation. the stop lamp(R.L) is on when the operation stops and the emergency lamp or alarm lamp(Y.L) displays the abnormal status during the operation such as operation of thermal relay. The reserve lamp(Y.L) circuit can be configured to be turned on when the automatic control devices such as low temperature switch, temperature control switch and condensation and pressure control switch are operating.

(5) Pressure Switch

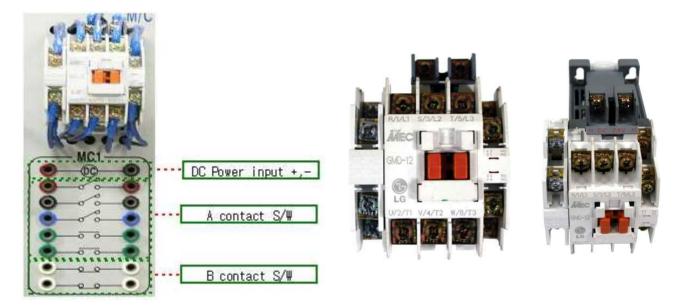
The Dual Pressure Switch(DPS) is the set of HPB and LPS. If the high pressure is over a certain level or the low pressure is below a certain level, it stops the motor for compressor. The excessively low differential pressure of LPS induces frequent setout of compressor and this is called Hunting.

On the contrary, the excessively high differential pressure of LPS extends the down time too much. So the temperature in the refrigeration room is increased. This is called Off Set.

A. L.P.S Low pressure control

In Fig. 1-22, the right part of dotted line shows setting value (RANGE) of low pressure, the other part difference (DIFF).

- (A) Set your desirable low pressure value by screw pin using screw driver.
- B Set your desirable difference value by screw pin using screw driver.
- © Connect between 'H' or 'L' and 'com' as your desirable control.
- D LPS-L Line OUT(When the desire value is lower than your setting value, connect 'com' and 'L')
- E LPS-H Line OUT(When the desire value is upper than your setting value, connect 'com' and 'H'.)


B. H.P.S High pressure control

(A) Set your desirable high pressure value by screw pin using screw driver.

(B) LPS-L Line OUT(When the desire value is lower than your setting value, connect 'com' and 'L')

© LPS-H Line OUT(When the desire value is upper than your setting value, connect 'com' and 'H', RESET : return.)

(6) Magnetic Contactor

Magnetic contactor (MC) controls compressor motor, condenser motor, solenoid valve and evaporator motor through sequence circuit.

① DC Power red is +, black -.

2 When DC power is on, A contact sticks to each other, so current can flow, and B contact separated, so current cut.

(7) Relay

Relay controls compressor motor, condenser motor, solenoid valve and evaporator motor through sequence circuit.

① DC Power red is +, black -.

2 When DC power is on, each contactor 1-3, 8-6 are connected each other(Flow current), at same time separated contactor 1-4, 8-5 each other(Close current).

(8) Thermal Relay

This device is called by thermostat overload relay makes the contact work under abnormal current than setting valve, so this device is needed for protecting from overflow current aborutly. The bimetallic thermostat operates as a function of expansion or contraction of metals due to temperature changes. Bimetallic thermostats are designed for the control of heating and cooling in air-conditioning units, refrigeration storage rooms, greenhouses, fan coils, blast coils, and similar units.

The working principle of such a thermostat is two metals, each having a different coefficient of expansion, are welded together to form a bimetallic unit or blade. With the blade securely anchored at one end, a circuit is formed and the two contact points are closed to the passage of an electric current. Because an electric current provides heat in its passage through the bimetallic blade, the metals in the blade begin to expand, but at a different rate. The metals coefficient of expansion is placed at the bottom of the unit.

After a certain time, the operating temperature is reached and the contact points become separated, thus disconnecting the appliance from its power source.

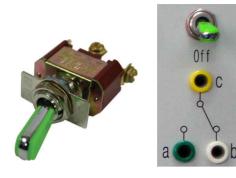
After a short period, the contact blade will again become sufficiently cooled to cause the contact point to join, thus reestablishing the circuit and permitting the current again to actuate the circuit leading to the appliance. The foregoing cycle is repeated over and over again. In this way, the bimetallic thermostat prevents the temperature from rising too high or dropping too low.

(9) Temperature Indicator and Controller

The digital temperature meter(Temp Meter) for measuring temperature measures on a defined areas for the performance test when the refrigeration training equipment is running. Then, it draws the pressure-enthalpy diagram with the measured temperature for the performance test of refrigeration training equipment. At this moment, the digital temperature meter is required to measure the temperature on each area. The performance test of refrigerator will be separately described.

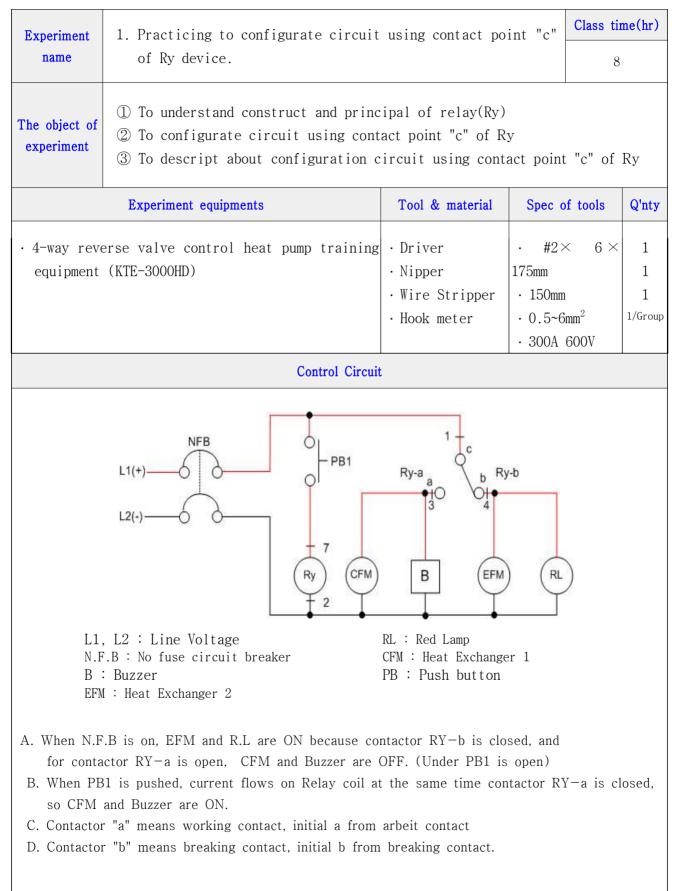
- ① Setting temperature value by push set button.
- 2 Choose temperature value by push up or down button.
- ③ Setting deviation value.
- ④ Connect contactor 'com' and '+ '.
- 5 Connect contactor 'H' or 'L' and '+'.

(10) On/Off Switch



This device is for start, stop, or ON/OFF.
① PB1 is for Running (A contact)
② PB2 is for Stop (B contact)

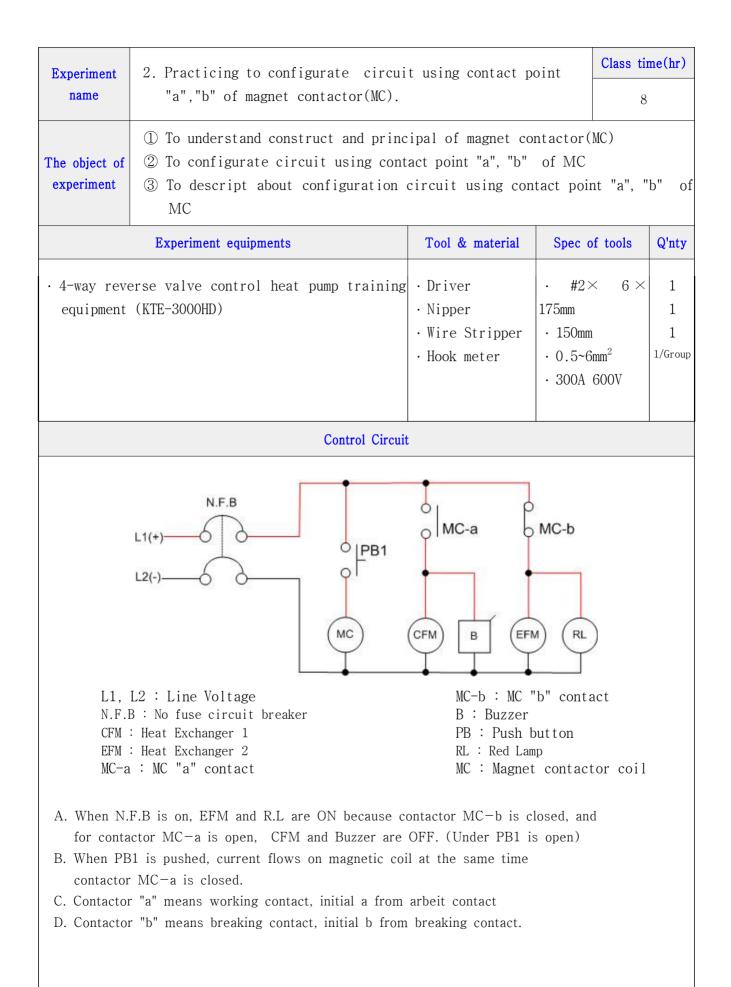
(11) Toggle Switch


This device is for start, stop, or ON/OFF. ① Connect 'C' and '+' power, operate by selection of 'a' or 'b'

(12) DC Power input

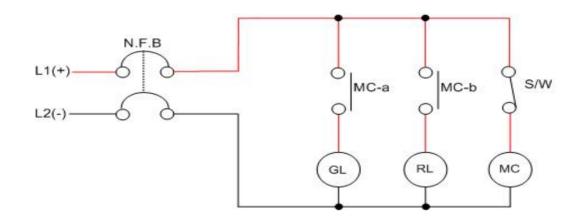
COMP : Compressor Motor		
Heat ex1 : Heat Exchanger 1		
Heat ex2 : Heat Exchanger 2		
SV : Solenoid Valve		
4-Way V/V : 4-Way Valve		
Plug for electric circuit	among	each
devices(Red plug +, Black)		

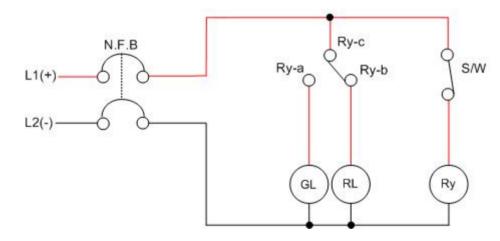
Chapter 3. Construction and Operation as circuit



• Check point

- 1. Checking tools and materials.
- 2 Practicing more 2 times through banana jacks using equipment(KTE-1000TP or KTE-1000BA), tools and materials.
- 3. Understanding construct and principal of MC.
- 4. Understanding the function of operating circuit.
 - ① Explaining the running process when PB is pushed.
 - O Explaining the running process when PB is released.
- 5. Describing contact "c" of refrigeration circuit.
- 6 Practicing to configurate circuit with electric wire using refrigeration real wiring trainer.(KTE-4000SQ).


		Appraisal	Point		Ren	nark		
		Circuit configuration using banana jack	20					
Relationship	Work (Point	Circuit configuration using real wire	20					
between technical	70))	Configuration state	10					
description		Understand and description for circuit	20					
rating items and	Task (Deint	Task attitude and safety	5					
task	(Point 10)	Application and standstill of tools	5					
	Time (Point 20)	• Demerit mark Point (in every () minute afte) er fini	ish	Work	Task	Time	Total



1. circuit of contact "a", circuit of contact "b"

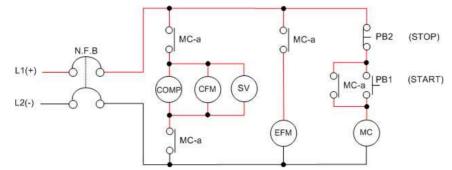
- A. If NFB switch is on, MC-b contact is closed and RL is on , MC-a contact is opened and GL is off. (S/W opening state)
- B. If S/W is closed, MC-a contact is closed and GL is on, MC-b is opened and RL is off.
- C. Arbeit contact means 『working contact』, so it`a initial is "a".
- D. Break contact means 『Opening contact』, so it`s initial is "b".

2. contact "c" (change circuit)

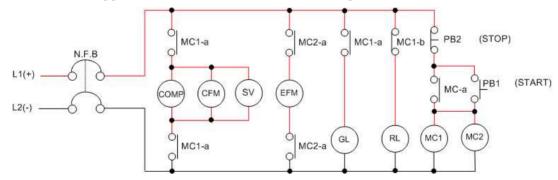
- A. If N.F.B S/W is closed, RL is on and GL is off.
- B. If S/W is closed, contact "b" is opened and RL is on, contact "a" is closed and GL is off. As like this, when there is current at electric coil Ry, one side is "a" contact circuit that is closed, the other side is "b" contact that is opened.
- C. Change over contact means 『transferring contact』, so it`s initial "c".

• Check point

- 1. Checking tools and materials.
- 2 Practicing more 2 times through banana jacks using equipment(KTE-3000HD), tools and materials.
- 3. Understanding construct and principal of MC.
- 4. Understanding the function of operating circuit.
 - ① Explaining the running process when PB is pushed.
 - ② Explaining the running process when PB is released.
- 5. Describing contact "a" and contact "b" of refrigeration circuit.
- 6 Practicing to configurate circuit with electric wire using refrigeration real wiring trainer.(KTE-4000SQ).


		Appraisal	Allot	Point		Ren	nark	
		Circuit configuration using banana jack	20					
Relationship	Work (Point	Circuit configuration using real wire	20					
between technical	Task (Point 10)	Configuration state	10					
description		Understand and description for circuit	20					
rating items and		Task attitude and safety	5					
task		Application and standstill of tools	5					
	Time (Point	• Demerit mark Point ()		Work	Task	Time	Total
	20)	in every () minute afte	every () minute after finish					

Experiment	3. Practicing to configurate self-ho	lding circuit for		Class tir	me(hr)						
name	name priority STOP of standard refrigeration system.										
The object of experiment	 To understand self-holding circui standard refrigeration system as To describe self-holding circuit constandard refrigerator. 	the circuit.			ate						
	Experiment equipments	Tool & material	Spec o	of tools	Q'nty						
	lve reverse valve control heat pump equipment (KTE-3000HD)	 Driver Nipper Wire Stripper Hook meter 	 #2> 175mm 150mm 0.5~6 300A 	i mm ²	1 1 1/Grouj						
	Control Circuit	;	1		1						
L1(+)											
N.F. MC :	B : No fuse circuit breaker SV Magnet contactor coil PI	FM : Condenser Fan M V : Solenoid V/V 3 : Push button DMP : Compressor m									



1. Manual Operating Circuit(Self-Holding Circuit) Design and Configuration in Refrigerator

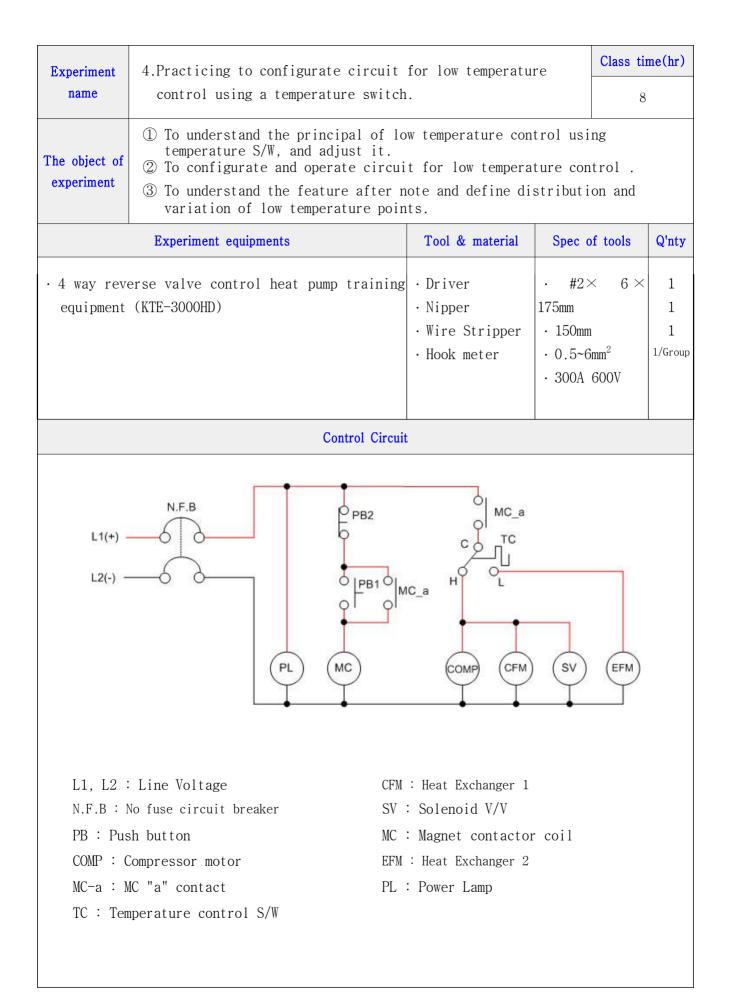
The manual operating circuits are configured, tested and experimented using the banana jacks in accordance with the refrigeration cycle drawings and operating circuits. The circuit designs and configuration principles are described below. Turn the Start button on, and the MC coil(MC Electric Coil) is excited. So the relay circuit "a", the main contact, is closed and the Motor Compressor and Condenser Fan Motor run. Then, the normal operation is started. Press the Stop button to turn the circuit off, and the MC coil(MC Electric Coil) is demagnetized. Then, the main contact is opened and so the Motor Compressor, Condenser Fan Motor and Evaporator Fan stop.

For the manual operation of refrigerator, the self-holding circuit is configured and operated using the relay circuit "a" of the magnetic switch(MC Electric Coil). Press the Start button, and the refrigerator runs. Press the Stop button, and the refrigerator stops. This is the basic application control circuit in the refrigeration devices.

When the N.F.B is opened, the break light(RL) of the relay circuit 'b' is on as the magnetic switch (MC Electric Coil) is demagnetized. Press the Start button, and the magnetic switch (MC Electric Coil) is excited. Then, the relay contact "a", the main contact, is closed and so the Motor Compressor, Condenser Fan and Evaporator Fan run. Accordingly, the normal operation is started. At this point, the operation light(GL) is on to indicate the refrigerator runs as the relay circuit 'a' is closed.

The relay circuit 'b' is opened and so the break light(RL) is off. Press the Stop button, and the magnetic switch(MC Electric Coil) is demagnetized. Then, the main contact is opened and so the Motor Compressor, Condenser Fan Motor and Evaporator Fan stop. Accordingly, the operation light(GL) is off and the relay circuit "b" is closed. Then, the break light(RL) is on to indicate that the operation stops.

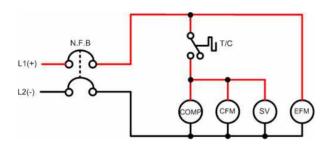
As described above, the manual operation to start and stop the refrigerator is carried out by configuring the self-holding circuits using the relay circuit "a" of the magnetic switch (MC Electric Coil). The refrigerators run by pressing the Start button and stop by pressing the Stop button. This method can be applied for the tests, practices and circuit designing in the actual fields.

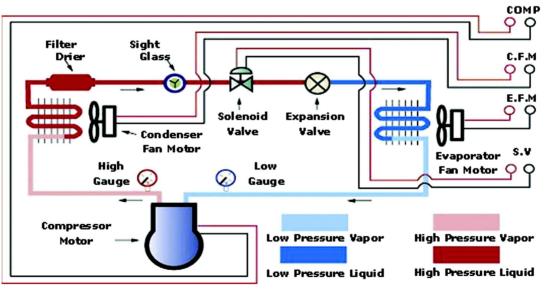


• Check Point

- 1. Checking tools and materials.
- 2. Configurating circuit of operation with banana jacks using tools and material.
- 3. Understanding the function of operating circuit.
 - ① Explaining the process when NFB S/W is on.
 - ② Explaining the process when PB1 is pushed.
 - ③ Explaining the process when PB2 is pushed.
 - ④ Explaining the principal of the self-holding circuit for priority STOP.
- 4. Configurating circuit with electric wires and operating using tools and materials.

		Appraisal	Allot	Point		Ren	nark	
		Circuit configuration using banana jack	20					
Relationship between	Work (Point	Circuit configuration using real wire	20					
technical	70))	Configuration state	10					
description rating		Understand and description for circuit	20					
items and	Task	Task attitude and safety	5					
task	(Point 10)	Application and standstill of tools	5		-			
	Time (Point	• Demerit mark Point ()		Work	Task	Time	Total
	20)	in every () minute after finish						



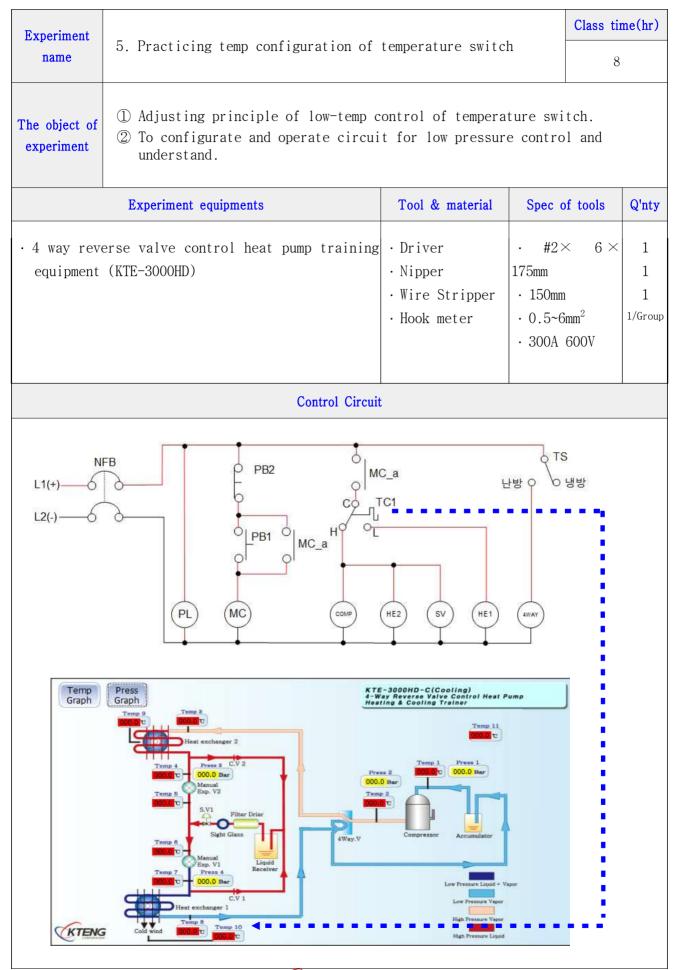

	distribution and variation of low temperature											
Test Steps	Temperature Setting	Temperature Deviation	In T	Out T	Actual Temperature	Adjustment						
1	10	2										
2	9	2										
3	8	2										
4	7	3										
5	5	3										

[Related Theory]

1. Understanding Automatic Temperature Control and Pump-down Operating Circuit

Automatic Refrigerator Temperature А. Control Overview Set the temperature \rightarrow Cut-out point of the preset temperature Condensing Unit \rightarrow motor, Condenser (Compressor Fan motor) stops \rightarrow Cut-in point of the preset temperature→ Condensing Unit restarts

Automatic Temperature Control and Operating Circuit in Refrigeration Cycle



\cdot Check Point

- 1. Checking tools and materials.
- 2. Configurating circuit of operation with banana jacks using tools and material.
- 3. Understanding the principal of temperature S/W as kinds of it, and setting the low temperature control value and explaining it.
- 4. Understanding the function of operating circuit.
 - ① Explaining the progress when PB1 is pushed.
 - ② Explaining the progress that refrigerator stops when temperature S/W is opened.
 - ③ Explaining the progress that refrigerator restarts when temperature S/W is closed.
 - 4 Explaining the progress that refrigerator starts when PB₂ is pushed.
- 5. noting and defining distribution and variation of low temperature points

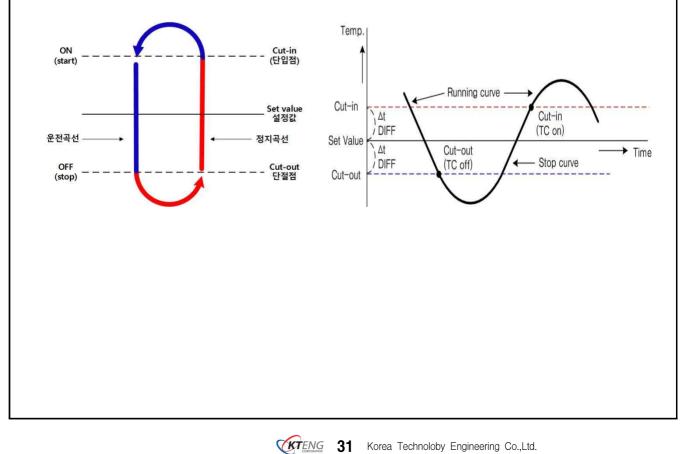
		Appraisal		Ren	nark			
		Circuit configuration using banana jack	20					
Relationship	Work (Point	Circuit configuration using real wire	20					
between	(Point 70))	Configuration state	10					
technical description		Understand and description for circuit	20					
rating	Task	Task attitude and safety	5					
items and task	(Point 10)	Application and standstill of tools	5					
	Time (Point	• Demerit mark Point ()			Work	Task	Time	Total
	20)	in every () minute after finish						

WEENG 30 Korea Technoloby Engineering Co.,Ltd.

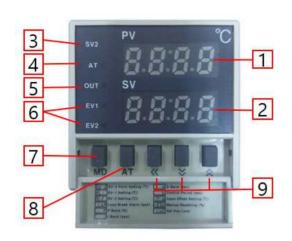
		N.F.B : COMP1 :	: Line vo : No fuse o : compresso magnetic o	circuit	SV1 : EFM :	Condenser fa solenoid val Evaporator d Cascadel out	lve 1
	No.	Temp	offset	In Temp	Out Temp	real temp	remarks
=	1	10	2				
	2	8	2				
	3	5	2				
	4 0 3						
	5	-2	3				l

Temp setting \rightarrow Cut Out Point reaches \rightarrow Condensing Unit stop \rightarrow Temp Cut In Point \rightarrow Condensig Unit re-operate

On/Off operating in range of set temperature and diff(offset) range.


CUT-IN (stop \rightarrow run) point = temp setting + offset

CUT-OUT (stop \rightarrow run) point = temp setting - offset


ex) Temp set $2\,{}^\circ\!\!{\rm C}$, offset $3\,{}^\circ\!\!{\rm C}$,

CUT-IN point 2 + 3 = 5[$^{\circ}$ C] , CUT-OUT point 2 - 3 = -1[$^{\circ}$ C].

* Temp control run/stop diagram

2.Temperature controller setting

① PV: Measurement display (red) Displays measured value.

Displays configuration subject in configuration mode.

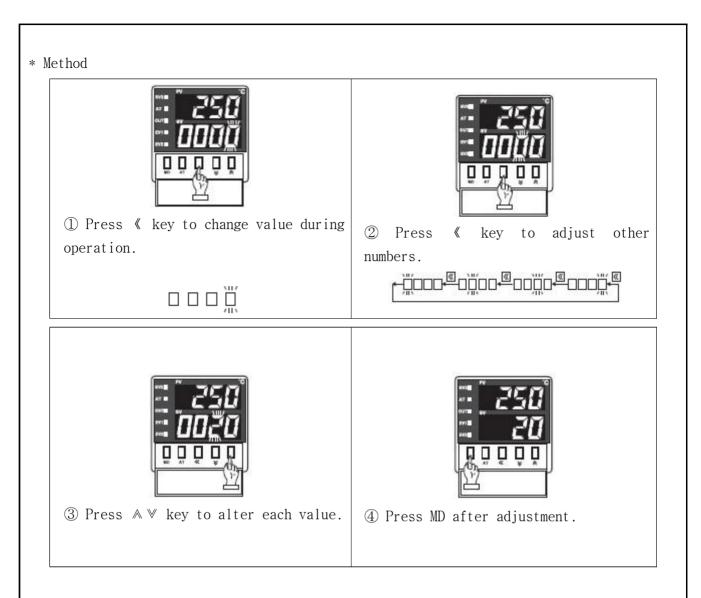
② SV: Configuration value display (green) Displays adjusting value.

configuration Displays subject in

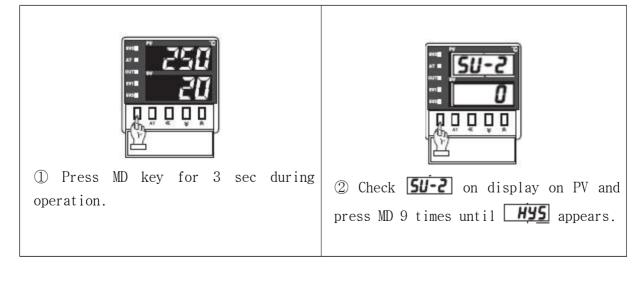
configuration mode. ③ SV2: SV2 on lamp

④ AT: auto-tuning on lamp

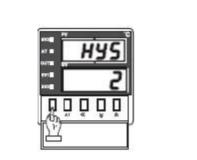
⑤ OUT: output on lamp


6 EV1,2: EVENT output display lamp

⑦ MD key: mode key


Press button for 3sec

- (8) AT key: Auto-tuning run key
- ⑨ ▲ ♥ 《 : adjustment key



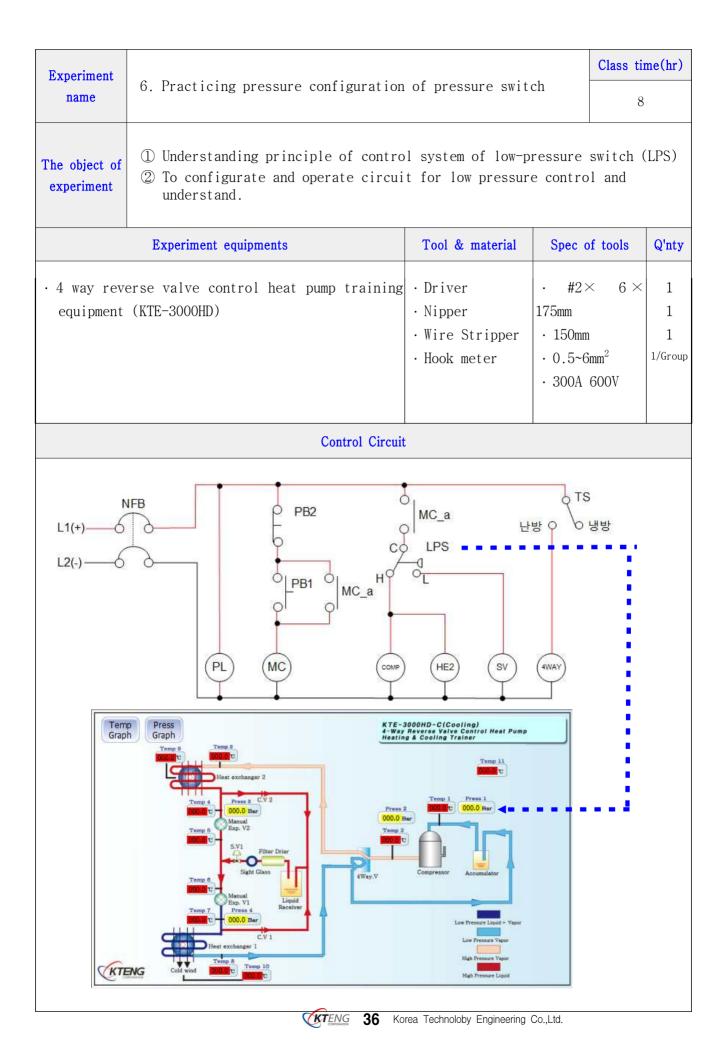
* Offset

③ Use ∧ V key to adjust offset value (basic: 2℃). Can be adjusted between 1~100℃.

④ Press MD to return to operation mode.

* Caution: Offset [Configuration value ± offset/2] can be varied between operation range.

ex) Configuration temp: 10 , Offset: 4 , In case of low temp control: starting at 10 + 2 = 12 [°C], stopping at 10 - 2 = 8 [°C]



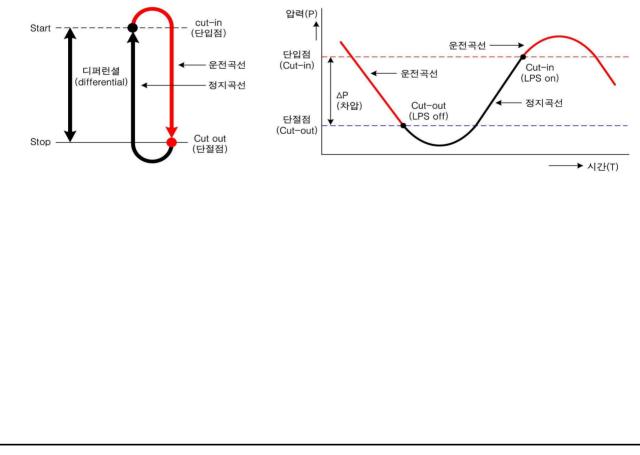
• Check Point

- 1. Checking tools and materials.
- 2. Setting the difference as the valves of LPS and explaining the operation principal of it .
- 3. Configurating circuit of operation with banana jacks using tools and material.
- 4. Understanding the function of operating circuit.
 - 1 Explaining the progress when PB1 is pushed.
 - ② Explaining the progress that the refrigerator is stoped when pressure at low pressure part goes down on running of compressor motor.
 - ③ Explaining the progress that the refrigerator is restarted when pressure at low pressure part goes up on stop of compressor motor
 - 4 Explaining the progress that refrigerator starts when PB₂ is pushed.
- 5. noting and defining distribution and variation of high temperature points

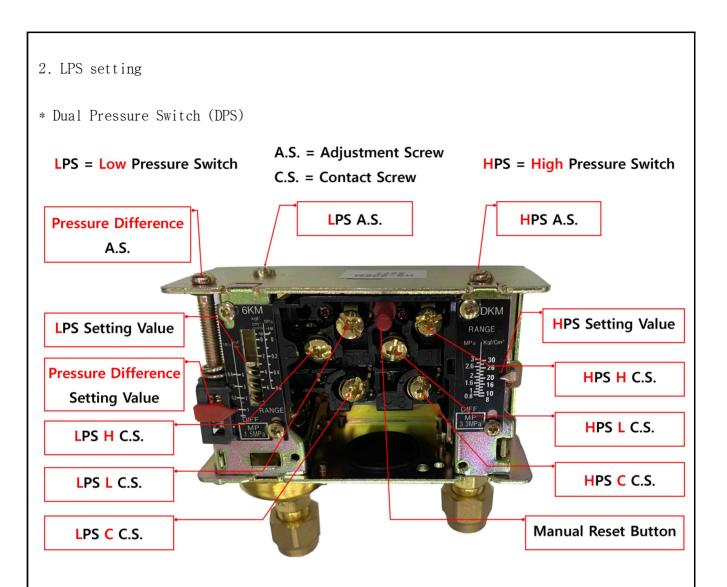
		Appraisal		Ren	nark			
		Circuit configuration using banana jack	20					
Relationship	Work	Circuit configuration using real wire	20					
between technical	(Point 70))	Configuration state	10					
description		Understand and description for circuit	20					
items and	Task	Task attitude and safety	5					
task	(Point 10)	Application and standstill of tools	5					
	Time (Point 20)	• Demerit mark Point (in every () minute afte) er fini	ish	Work	Task	Time	Total

	L1, L2 : Line voltage			CFM : Condenser fan motor			
	N.F.B	: No-fuse bre	aker	SV1 : Solenoid valve 1			
COMP1 : 1 st stage comp			LPS : Low-pressure switch				
PB : push button			MC : Magnetic contact				
No.	Cut in P	D.P	Cut out P	Pressure gauge	Remarks		
1	3	2	1				
2	3	1	2				
3 4 2 2							

Operating refrigeration on/off cycle upon configurations below.


CUT-IN (stop \rightarrow run) POINT = configuration pressure

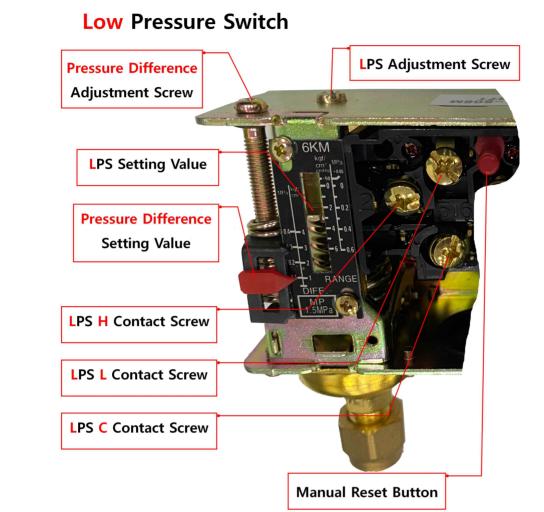
CUT-OUT (run \rightarrow stop) POINT = configuration pressure - offset


ex) configuration pressure 5, offset 3 [bar]

CUT-IN point 5 = 5[bar], CUT-OUT point 5 - 3 = 2[bar]

* LPS run/stop curve

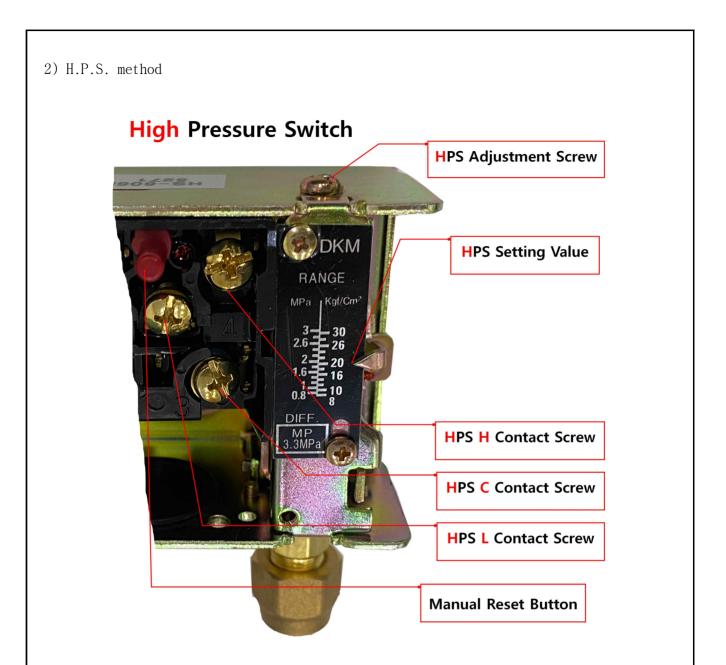
DPS is a multi purpose switch which contains both low-high pressure swtiches. DPS consist of lever, contact adjust screw and run/stop compressor upon refrigerant pressure.


1) Structure

Referring the figure above, LPS is located below cover of DPS and High Pressure Switch (HPS) is located next to itself. There are 3 contacts each which is 'C' below the LPS, 'A' above, 'H', and 'L' (B contact) on the upper side. LPS contains pressure up/down adjust screw and HPS has manual return structure which lack of down pressure switch.

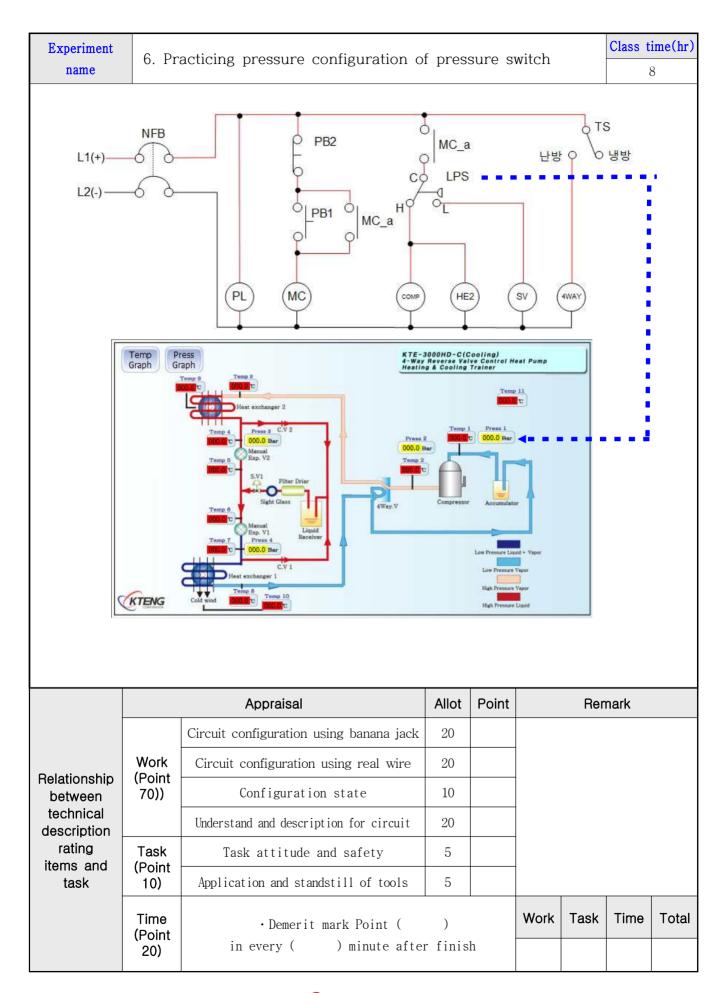
High/low pressure switch protects the equipment by opening/closing L,H contact upon high/low pressure configuration during equipment operation.

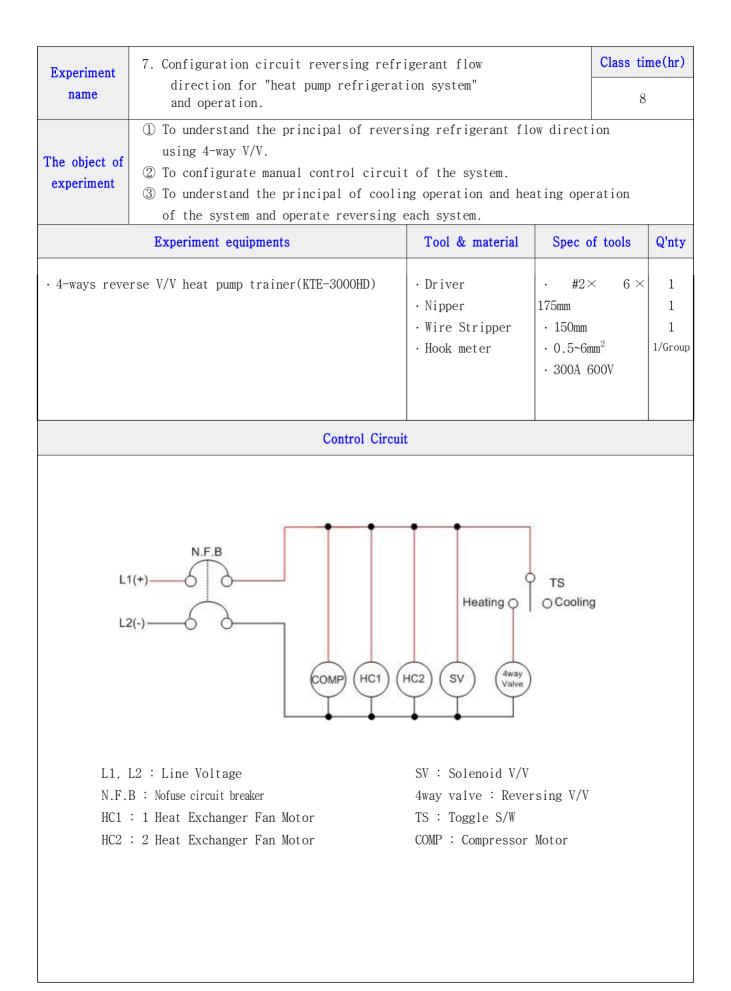
1) L.P.S. method



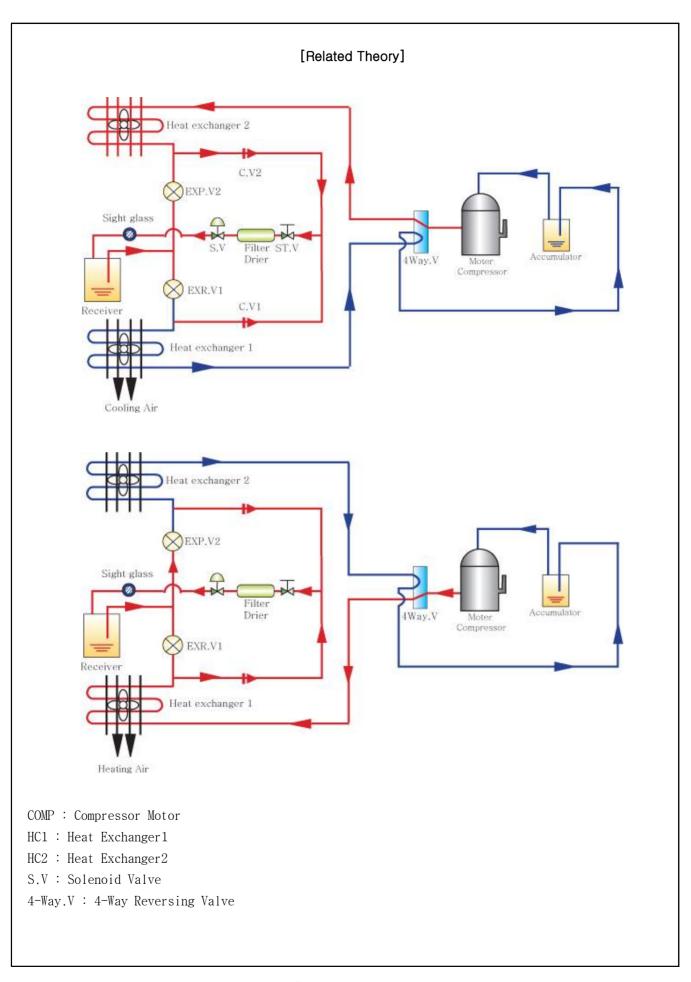
Right gradation: Low pressure (RANGE)

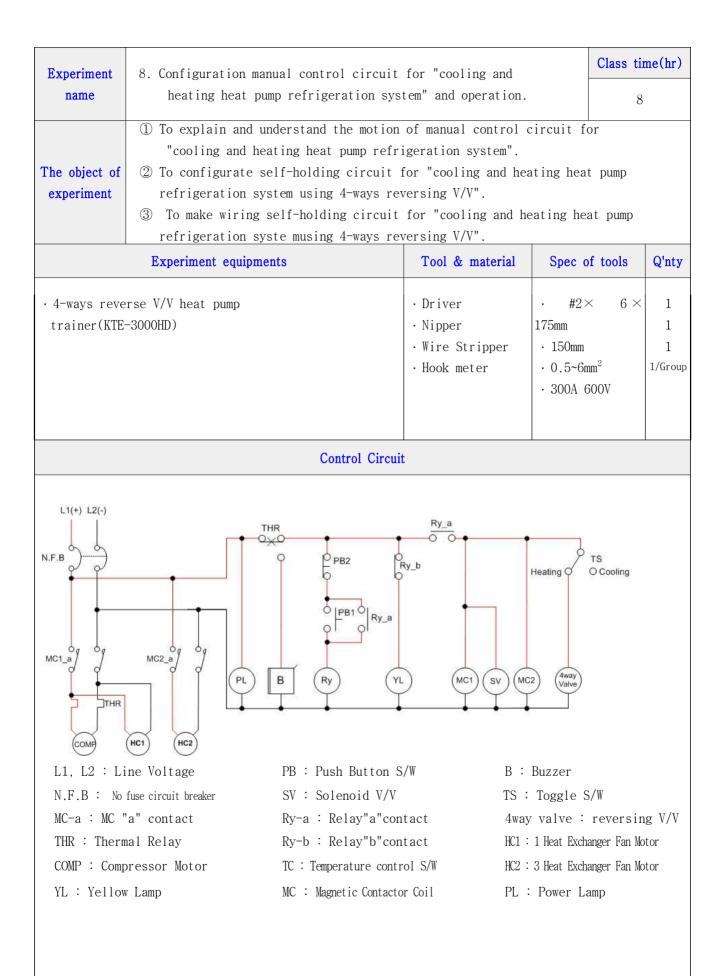
Left gradation: offset(DIFF)


- ① Adjust low pressure by turning the screw clockwise/anti-clockwise with screw driver(+)
- ② Also adjust offset by turning the screw clockwise/anti-clockwise with screw driver(+)
- ③ Apply (+) power on com port and connect to certain port upon configuration (L or H) then connect other side of the cable to Comp (red port) next to DC power input.
- 4 LPS-L Line OUT (connect to COM -> L line port when pressure drops below configuration pressure)
- ⑤ LPS-H Line OUT (connect to COM -> H line port when pressure reaches up to configuration pressure)



- (6) Adjust high pressure by turning the screw clockwise/anti-clockwise with screw driver(+)
- O HPS-L Line OUT (connect to COM -> L line port when pressure drops below configuration pressure)
- ⑧ HPS-H Line OUT (connect to COM -> H line port when pressure reaches up to configuration pressure, manual return by reset)





• Check Point

- 1. Set a heat pump using 4-ways reversing V/V cooling, heating refrigeration trainer, and check electric state and refrigerant charging state.
- 2. Understand the function of operating circuit.
 - ① Explain the progress that refrigerator starts when NFB is on.
 - ② Explain the principal of heating cycle comparing with cooling cycle when TS(Toggle S/W) reverses.
 - ③ Explain the principal of cooling cycle comparing with heating cycle when TS(Toggle S/W) reverses.
- 3. Explain the function of 4-ways reversing V/V.
- 4. Configurate circuit using banana jacks and operate using banana jacks with experiment equipments, tools and materials.
- 5. Configurate circuit using real wires(KTE-4000SQ) and operate using banana jacks with experiment equipments, tools and materials.

		Appraisal	Allot	Point		Ren	nark	
		Circuit configuration using banana jack	20					
Dalatianakia	Work	Circuit configuration using real wire	20		-			
Relationship between	(Point 70))	Configuration state	10					
technical description		Understand and description for circuit	20					
rating items and	Task	Task attitude and safety	5					
task	(Point 10)	Application and standstill of tools	5					
	Time (Point 20)	•Demerit mark Point (in every () minute after) r finis	h	Work	Task	Time	Total
	20)							

Check Point

- 1. Set a heat pump using 4-ways reversing V/V cooling, heating refrigeration trainer, and check electric state and refrigerant charging state.
- 2. Understand the function of operating circuit.
 - ① Explain the progress when PB1 is pushed.
 - 2) Explain the process of heating operation when TS is reversed to heating operation during the system running.
 - ③ Explain the process of cooling operation when TS is reversed to cooling operation during the system running.
 - 4 Explain the progress that refrigerator starts when PB₂ is pushed.
- 3. Configurate circuit using banana jacks and operate using banana jacks with experiment equipments, tools and materials.
- 4. Configurate circuit using real wires(KTE-4000SQ) and operate using banana jacks with experiment equipments, tools and materials.

		Appraisal	Allot	Point		Ren	nark	
		Circuit configuration using banana jack	20					
	Work	Work Circuit configuration using real wire						
Relationship between	(Point 70))	Configuration state	10					
technical description		Understand and description for circuit	20					
rating items and	Task	Task attitude and safety	5					
task	(Point 10)	Application and standstill of tools	5					
	Time (Point	• Demerit mark Point ()	h	Work	Task	Time	Total
	20)	in every () minute after	r Iinis	n				

4. Experimental

4-1. Install and how to use KTE-DA100

(1) INSTALL USB TO SERIAL

- Communication method is using cmputer and RS232 protocol for communication
- If you got a desktop which is connected with Serial Port back, you don't have to install USB TO Serial.
- If you got a desktop which doesn't have notebook or Serial Port, you need to install progress for collecting data using USB Port.
- ① Put Install CD into CD-ROM.
- ② After reading "CD-ROM DIRECTORY", Following screen is indicated.
- ③ Double click window folder in this screen.

() HE - () - () 🔎 Z		Kolder Sync			
	and a second	1.000			
🖄 🕐 C:\Documents and Set					20
 파일 및 존대 작업 ※ ※ 여기에 새 존대 만들기 ※ ※ 존대로 웹에 게시 ※ ※ ※ ※ 	OIE - Imac Inux window		종류 파일 좀더 파일 졷더 파일 졷더	수정한 날자 2007-09-03 오전 2007-09-03 오전 2007-09-03 오전	
기타 위치 (초) 바탕 최면 내 문서 고 유 문서 내 법류티 내 네트워크 환경					
ХМбі 👻					
ля			0비년이트		

⑤ Click "Next" then it goes to install.

④ Go into window folder following file is indicated, In here, operate Setup.exe whici is installation file.

파일(E) 편집(E) 보기(Y) 즐겨찾기(A 🔇 뒤로 🔹 🕥 - 🎓 🔎 검색 📔

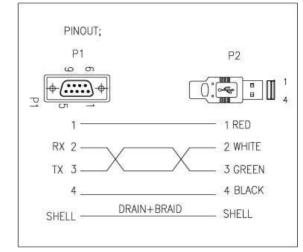
기타 위치

자세히

USB to RS232 1.1 내 문서 공유 문서 및 내 컴퓨터 및 내 컴퓨터 및 내 네트워크 환경

도구(I) 도움말(H)			
≣CI	Folder Sync	~ ()	0.5
world driver over world driver over tage PL NF PL NF PL NF PL NF NF NF NF NF NF NF NF NF NF	10.53.0 (19.54.5) (19.54.5) (19.54.54.54.54.54.54.54.54.54.54.54.54.54.	수정한 날자 2001-11-07 오후 2003-12-01 오전 2003-10-27 오후 2001-05-23 오후	
	3,31MB	💡 내 컴퓨터	


6 After installing, next screen is indicated.


⑧ Method to set Communication Port Click "Strat"// Option// into Control Panel. Double click "System" in Control Panel.

2
시스템 복원 자동 업데이트 원격
시스템: Microsoft Windows XP Professional Version 2002 Service Pack 2 사용자 정보: CGS
55663-640-1686545-23154
컴퓨터이동서비스 CGS Computer
Intel(R) Celeron(R) CPU 1,70GHz 1,72GHz, 256MB RAM
지원 정보(<u>S</u>)

10 Click "Device Administrator".

⑦ USB TO SERIAL PORT wiring diagram.

(9) Click "Hardware tap".

When you click like picture, emege USB SERIAL PORT. After Mouse right click "USB SERIAL PORT" and click "Attribute".

12 Click "Port option".

비트/초(<u>B</u>):	9600	~	
데이터 비트(፬):	8	~	
	없음	~	
정지 비트(<u>S</u>):	1	~	
흐름 제어(<u>F</u>):	없음	~	

(13)	Click	"High	rank".
------	-------	-------	--------

	에 분재가 있	으면 설정값					확인 취소
수선 배퍼(B):	낮음 (1)			J	높음 (14)	(14)	기본값()
옥십 HB(①:	낮음 (1)				놀음 (16)	(16)	

④ After setting appropriately to port for user equipment, Click OK.

(2) KTE-DA100 Installation and Operating

1) KTE-DA100 Installation

🕞 KTENG Setup	
🔯 setup	

KTENG Setup			
Welcome to the KTEN	NG Setup Setu	p Wizard	
The installer will guide you through t	the steps required to insta	III KTENG Setup or) your computer.
WARNING: This computer program Unauthorized duplication or distribut or criminal penalties, and will be pros	ion of this program, or an secuted to the maximum	y portion of it, may extent possible und	esult in severe civil er the law.
	Cancel	< <u>B</u> ack	Next >
KTENG Setup			
∦ KTENG Setup Select Installation Fo	older		
Select Installation Fo The installer will install KTENG Setu To install in this folder, click "Next".	ip to the following folder.		
Select Installation Fo	ip to the following folder. To install to a different fo		
Select Installation Fo The installer will install KTENG Setu To install in this folder, click "Next". <u>Fo</u> lder:	up to the following folder. To install to a different fo (TENG Setup₩	Ider, enter it below	or click "Browse".
Select Installation Fo The installer will install KTENG Setu To install in this folder, click "Next". Eolder: C:\Program Files (x86)\K	up to the following folder. To install to a different fo (TENG Setup₩	Ider, enter it below	or click "Browse".
Select Installation Fo The installer will install KTENG Setu To install in this folder, click ''Next''. Eolder: C:\Program Files (x86)\WK	up to the following folder. To install to a different fo (TENG Setup₩	Ider, enter it below	or click "Browse".

- ① You can see a installation files that in CD or USB for installation then double click 'KTENG Setup' file to start installation. If the program cannot be installed using 'KTENG Setup', try to 'setup'file.
- ② If you can see a 'Setup Wizard' screen, click the 'Next>'.

③ You can change a installation route. If you want to change a installation route, click the 'Browse..' and find a new route then click the 'Next>'.

KTENG Setup			
Confirm Installation			
The installer is ready to install KTE	NG Setup on your computer.		
Click "Next" to start the installation	1.5		
	Cancel	< <u>B</u> ack	Next >

④ It require to confirm installation intention. Please click the'Next>'.

岁 KTENG Setup		
Installing KTENG Setup		
KTENG Setup is being installed.		
Please wait		
Cancel	< <u>B</u> ack] [<u>N</u> ext>
劇 KTENG Setup		X
劇 KTENG Setup Installation Complete		
Installation Complete		 ×
Installation Complete KTENG Setup has been successfully installed.	0	
Installation Complete KTENG Setup has been successfully installed.		
Installation Complete KTENG Setup has been successfully installed.		
Installation Complete KTENG Setup has been successfully installed.		

⑤ Installing a program.

⁽⁶⁾ Please click the 'Close' and complete a installation.

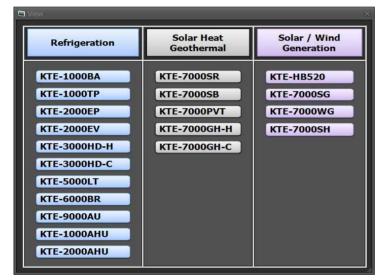
⑤ Start program by using icon in wallpaper or routing folder then the main page of program come up. KTE-DA100 🖹 View 🧳 Setting 🕥 Control Solar / Wind Solar Heat Refrigeration Geothermal Generation

KTE-7000SR

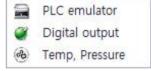
KTE-HB520

KTE-1000BA

KTE-1000TP KTE-7000SB KTE-7000SG KTE-2000EP KTE-7000PVT KTE-7000WG
--


C			
KTE-1000BA	Standard Refrigeration Experimental Equipment	KTE-7000SR	Solar Radiation Energy Experimental Equipment
KTE-2000EP	Evaporation Pressure Parallel Control Experimental Equipment	KTE-7000SB	Solar Heating Hot Water Boiler Experimental Equipment
KTE-2000EV	Refrigerant Parallel Expansion Valve Experimental Equipment	KTE-7000PVT	PVT Performance Measuring Equipment
КТЕ-3000HD- Н	4-Way Reverse Valve Control Heat Pump Experimental Equipment (Heating Mode)	КТЕ-7000GH- Н	Geothermal Heat Pump Experimenatl Equipment (Heating Mode)
KTE-3000HD- C	4-Way Reverse Valve Control Heat Pump Experimental Equipment (Cooling Mode)	KTE-7000GH- C	Geothermal Heat Pump Experimenatl Equipment (Cooling Mode)
KTE-5000LT	Binary Refrigeration Experimental Equipment	KTE-HB520	Hybrid Power Conversion Experimental Equipment
KTE-6000BR	Brine Refrigeration Experimental Equipment	KTE-7000SG	Solar Power Generation Experimental Equipment
KTE-9000AU	Car Air-Conditioner Experimental Equipment	KTE-7000WG	Wind Power Generation Experimental Equipment
KTE-1000AHU	Air-Conditioning Unit Automatic Control Equipment	KTE-7000SH	Solar-hydrogen Fuel Cell Experimental Equipment
KTE-2000AHU	Air Handing Unit Lab-view Programing Equipment		

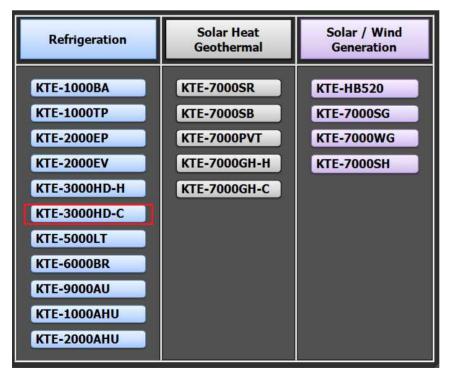
2) Main Menu Composition



① View

(Refrigeration 11 species, Solar-Geothermal 5 species, Solar-Wind energy 4 species)

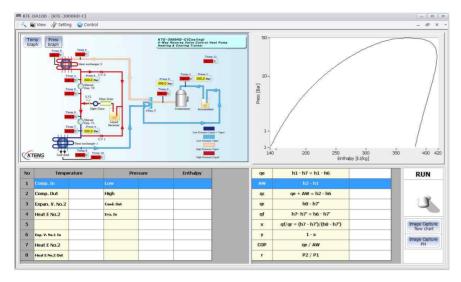
	Offset setting
0	Serial setting
5555	Save interval setting
0	PH offset setting
1	Refrigerant setting


(2) Setting

Menu	Explain
Offset Setting	Setting initial pressure, temperature
Serial Setting	Communicating port setting
Save Interval Setting	Setting data acquisition time interval
PH Offset Setting	Setting range of axis at p-h chart
Refrigerant Setting	Select refrigerants

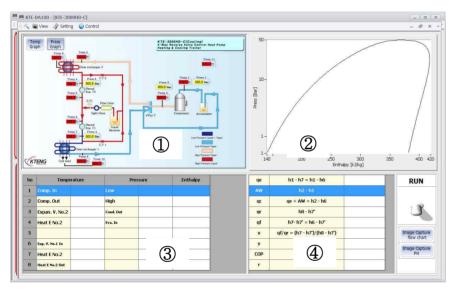
(3) Control

Menu	Explain
PLC emulator	Using PLC control
Digital output	Control a Hardware
Temp, pressure	Control a temperature, pressure


- (4) Application of data acquisition equipment(Model : KTE-DA100)
- 1) Selection of Model

 When program started, 'View' screen is activated.

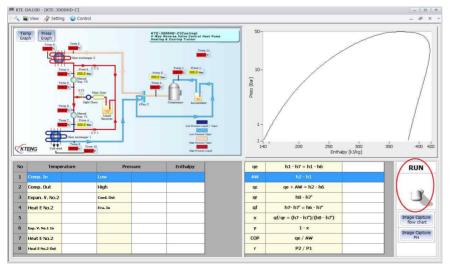
② Select a model what you want.(Click the KTE-3000HD-C)



③ Main user interface of KTE-3000HD

(4-Way Reverse Valve Control Heat Pump Heating & Cooling Training Equipment) is activated.

i) Composition of main user interface

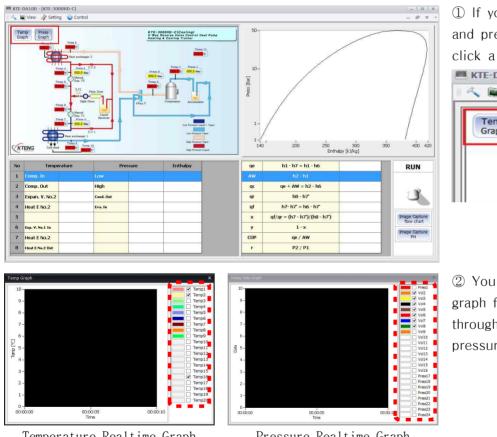

① Schematic diagram of system show temp., press., (in realtime.)

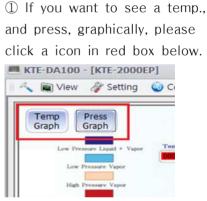
2 p-h chart.

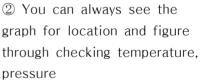
③ Data table of temp., press. and enthalpy.

④ Calculation value of COP, cooling capacity, heat capacity in HX.

ii) Operating and saving data


① Click a toggle switch to run program to save data.

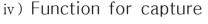

	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	(86) • KTENG Setup • SaveData	 ✓ 4₇ Si 	veData 검색	
구성 ▼ 새 폴더					- 6
★ 즐겨찾기 이름 ↓ 다운로드 ■ 바탕 화면	â	수정한 날짜 일치하는 항목(크기		
🔜 이상 와진 📆 최근 위치					
■ 라이브러리 ■ 문서 ■ 비디오					
 ■ 사진 ♪ 음악 					
♥ 컴퓨터					
🏭 로컬 디스크 (C:)					
금 로컬 디스크 (D:) BD-ROM 드라인 ▼					
파일 이름(N):					
파일 형식(T): csv files (*.csv)					

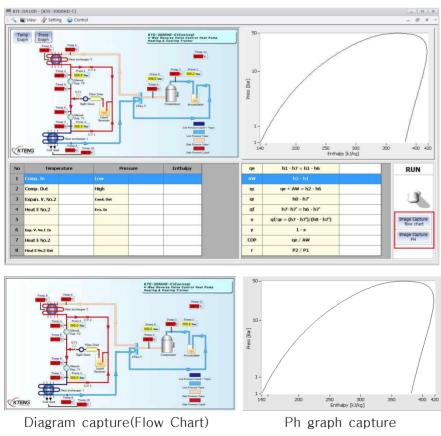

2 Write a title and save a file by excel.

* The reason of writing title first is that can save data even though unavoidable situation happened.

iii) Find a graph

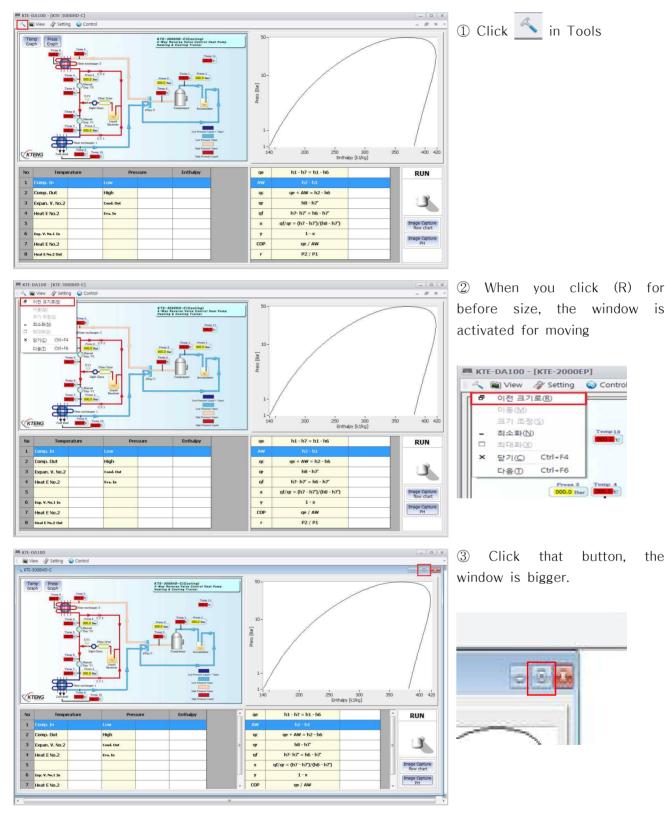
Temperature Realtime Graph


Pressure Realtime Graph

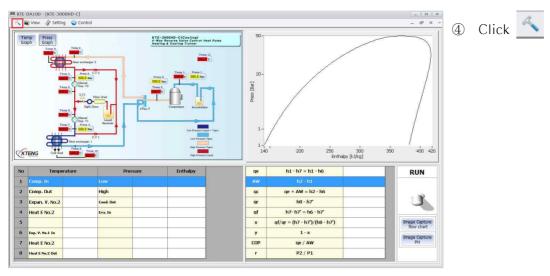


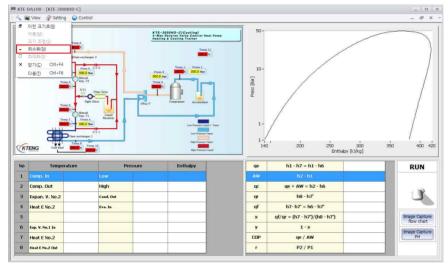
③ Seeing the graph for individual temperature and pressure is that double click display of monitor then indicate the graph window as below

④ You can always check the temperature in real time.

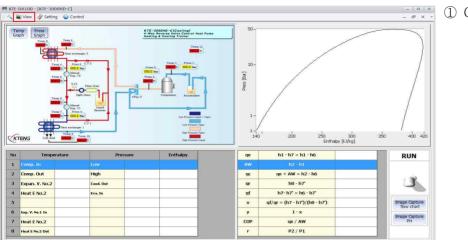


KTENG 58

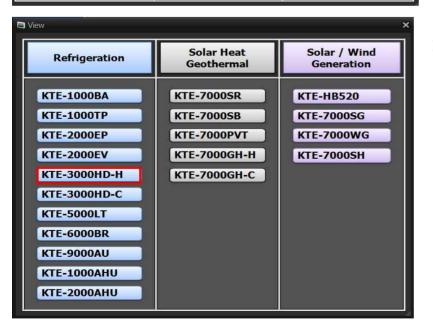

 The bottom of the right side, click Image
 Capture flow chart and Image
 Capture PH then it is saved to
 JPG files


2 Monitor when choosing-Diagram(FlowChart) capture- Ph graph capture

- 2) Function for collecting data tools
- $_{\rm i}$) Tools

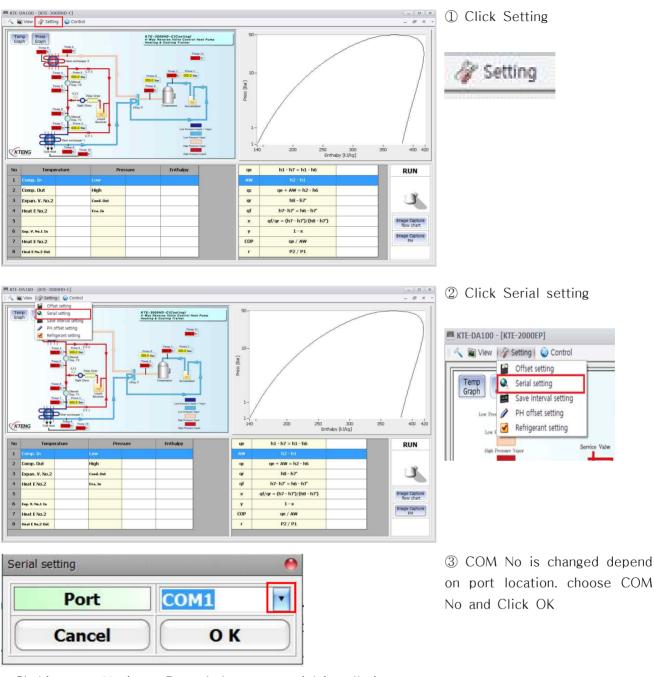

(5) When click the minimum(N), indicate bottom of the left side.

⁽⁶⁾ When click whole monitor, it is returned.

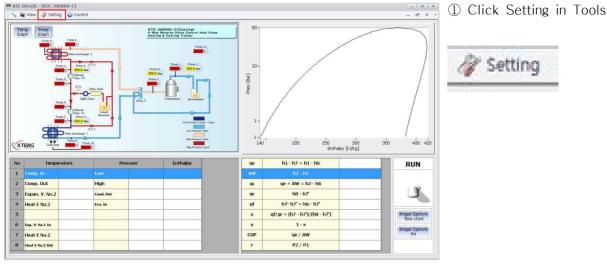


Solar / Wind Solar Heat Refrigeration Geothermal Generation **KTE-1000BA KTE-7000SR** KTE-HB520 **KTE-1000TP KTE-7000SB** KTE-7000SG **KTE-2000EP** KTE-7000PVT **KTE-7000WG KTE-2000EV** KTE-7000GH-H **KTE-7000SH** KTE-3000HD-H KTE-7000GH-C KTE-3000HD-C KTE-5000LT KTE-6000BR KTE-9000AU KTE-1000AHU KTE-2000AHU

② When you click the view and click Model name then it goes to main sreen and it indicates program screen which is connected with real equipments



* Operate to same way a Heating Mode (KTE-3000HD-H.


① Click the view in Tools

- iii) Setting
- a) Serial setting

*Chcking port No is on Page_1-1 use to serial installation

_ _ x 🐚 View ting 🕠 6 Temp Graph KTE-3000HD-C(Cooling) 4-Way Reverse Valve Control Heat Pu Heating & Cooling Trainer -Cours Int Press [Bar] 1 400 420 200 250 300 Enthalpy [kJ/kg] KTENG Enthalpy qe h1 - h7 = h1 - h6 RUN No Tempera Pressure 1 qe + AW = h2 - h6 2 Comp. Out High q U. 3 Expan, V. No.2 ond. Ou qr h8 - h7* 4 Heat E No.2 Eva. In qf h7-h7 = h6 - h7 qf/qr = (h7 - h7')/(h8 - h7') x Image Capture flow chart 6 Exp. V. No.1 In y 1 - x Image Capture PH 7 Heat E No.2 qe / AW COP 8 Heat E No.2 Out r P2 / P1

Temp3

Offset

counte

Offset

counte

Offset counte

Temp15

0000 😂

0000

0000

0000

0.0

0.0

 $\overline{\mathbf{v}}$

0.0

Temp Offset Zero Voltage Offset Zero Temp's Parameter Voltage's Parameter

0000

0000

0.0

0.0

0.0

Temp2

Offset counter

Offset

counter

Offset counter

Temp14

KTE-DA100 - [KTE

Offset setting

Offset

counter

Temp5

Offset

counter

Offset counter

0000) 🝣

0000 😴

0000 😴

8888 🝣

0.0

0.0

0.0

OHD-C]

(2)When you click Offset setting. below screen is indicated

🔪 🐚 View 📗	🕼 Setting 🛛 🔕 Control	-
	Offset setting	F
Temp	Serial setting	1
Graph	Save interval setting	
Low Pres	PH offset setting	
Low F	Refrigerant setting	

③ Temp Offset Zero is that can control temperature

💌 : You can control using

direction key

•

0.0

0.0

0.0

V

Offset 0.0 : It is counter indication for temperature figure Click the application then click the Close for applying the figure

Temp4

0000

Offset counter

Offset

counter

Offset counte

Temp16

Offset setting			8
Temp Offset Zero Volta	ge Offset Zero Temp's Pa	rameter 📜 Voltage's Parame	iter
Vol1	Vol2	Vol3	Vol4
Offset 0.0 counter	Offset 0.0	Offset 0.0 counter	Offset 0.0
Vol5	Vol6	Vol7	Vol8
Offset 0.0	Offset 0.0	Offset 0.0 counter	Offset 0.0
Vol9	Vol10	Vol11	Vol12
Offset 0.0 counter	Offset 0.0	Offset 0.0 counter	Offset 0.0 counter
Vol13	Vol14	Vol15	Vol16
Start saving		R	eset Appliance Close

Temp3

Y = 70 \$ X + -150 ¥ Y = 70 \$ X + -150 ¥ Y = 70 \$ X + -150 \$ Y = 70 \$ X + -150 \$

Temp7 Y = 70 🛊 X + -150 🛊 Y = 70 🛊 X + -150 🛊 Y = 70 🛊 X + -150 🛊 Y = 70 🛊 X + -150 🛊

Temp11

Temp4

Temp8

Temp12

Temp Offset Zero Voltage Offset Zero Temp's Parameter Voltage's Parameter

Temp2

Temp6

Temp10

Offset setting

Temp5

Temp9

Temp1

④ Voltage Offset

Zero is a part of can control voltage

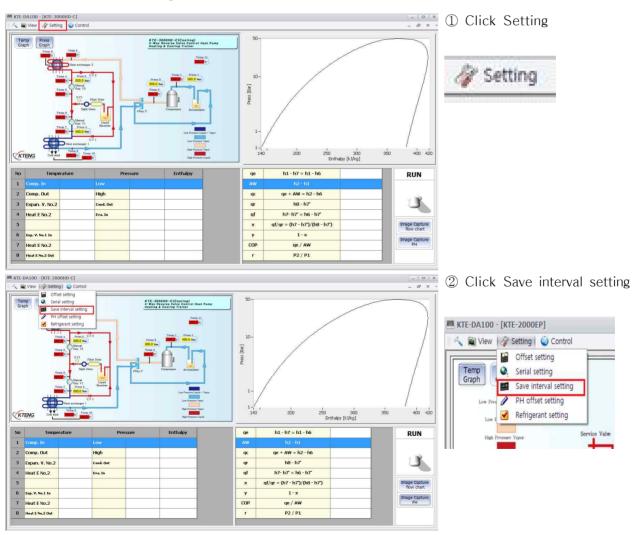
(~)

 : You can control using direction key

Offset 0.0 : It is counter indication for voltage figure Click the application then click the Close for applying the figure

⑤ Temp's Parameter must enter a value of Y = 70X-150on all of the items is a place to enter a formula that converts the output signal of the thermometer with temperature. click the "Application" and click "Close" for Application

6 Voltage`s Parameter has a function which can input the figure for changing input figure, You can set as choosing Pressure, Voltage. Click "Application" and click "Close" for Application.


Temp13	Temp14	Temp15	Temp16
Y = 70 \$ X + -150 \$	Y = 70 🛊 X + -150 🛊	Y = 70 X + −150	Y = 70 文 X + -150 文
Start saving		Re	eset Appliance Clo
set setting		10 100 10 10 10	
Temp Offset Zero Volta	ge Offset Zero 📜 Temp's Pa	rameter Voltage's Parame	ter
Voll	Vol2	Vol3	Vol4
$Y = 1 \diamondsuit X + 0 \diamondsuit$	$Y = 1 \clubsuit X + 0 \clubsuit$	$Y = 1 \diamondsuit X + 0 \diamondsuit$	$Y = 1 \doteqdot X + 0 \diamondsuit$
Press O Voltage	Press O Voltage	Press O Voltage	Press
Vol5	Vol6	Vol7	Vol8
Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘
Press O Voltage	Press O Voltage	Press O Voltage	Press O Voltage
Vol9	Vol10	Vol11	Vol12
Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘
Press O Voltage	Press O Voltage	🖲 Press 🔿 Voltage	🖲 Press 💿 Voltage
Vol13	Vol14	Vol15	Vol16
Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘
Press	Press O Voltage	Press	Press

Vol1	Vol2	Vol3	Vol4
' = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘	Y = 1 🗘 X + 0 🗘
Press O Voltage	Press	Press O Voltage	Press Voltage
Vol5	Vol6	Vol7	Vol8
′ = 1 ♦ X + 0 ♦	Y = 1 🛊 X + 0 🛊	Y = 1 🗘 X + 0 🛟	Y = 1 🛊 X + 0 🛊
Press O Voltage	Press O Voltage	Press O Voltage	Press O Voltage
Vol9	Vol10	Vol11	Vol12
′ = 1 ♦ X + 0 ♦	Y = 1 🛊 X + 0 🛊	Y = 1 🗢 X + 0 🗘	Y = 1 🛊 X + 0 🛊
Press O Voltage	Press O Voltage	Press O Voltage	Press O Voltage
Vol13	Vol14	Vol15	Vol16
′ = 1 ♀ X + 0 ♀	Y = 1 🛊 X + 0 🛊	Y = 1 🗘 X + 0 🗘	Y = 1 🛊 X + 0 🛊
Press	Press	Press	Press

⑦ Start saving setfigure and Click "Close"on the left screen

c) Save interval setting

③ Save interval setting

A function for setting a data storage time interval The time interval as an Excel file Can be stored in line.(However, the number of seconds (Sec) because When set to one minute is Set to 60Sec)

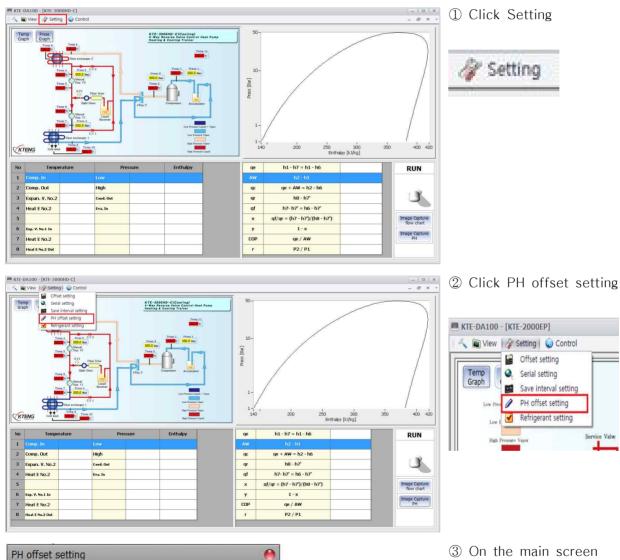
d) PH offset setting

Press

Y =

1 🗘 X +

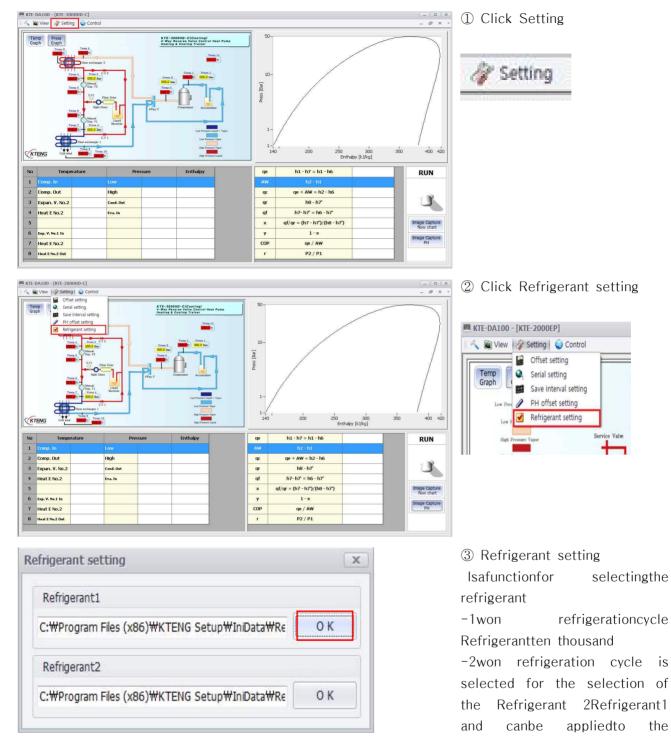
0 \$


Enthalpy

Y =

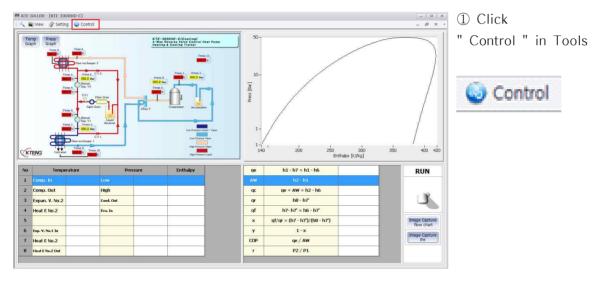
1 🗘 X +

0 🛟

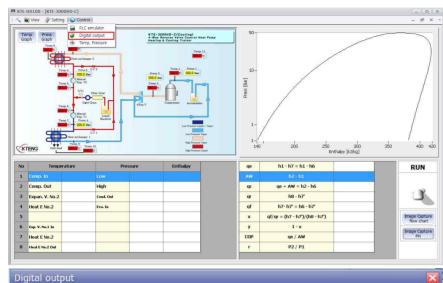

O K

③ On the main screen
 The PH seondopyo Press,
 The axis values of the
 Enthalpy Adjustment function

e) Refrigerant setting



program. Click " OK " the



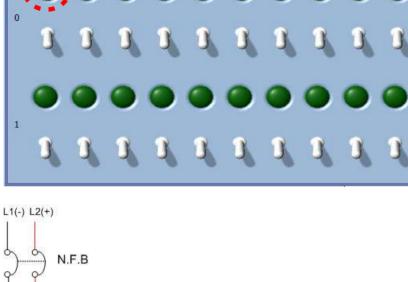
성 ▼ 새 폴더					≅ ∙		
주 즐겨찾기	아름	수정한 날짜	유형	크기		-	
🚺 다운로드	R11	2013-04-19 오후	Microsoft Excel	1,100KB			
🔜 바탕 화면	图) R12	2013-05-01 오후	Microsoft Excel	878KB			
💹 최근 위치	图) R13	2013-04-19 오후	Microsoft Excel	869KB		E	
	R14	2013-04-19 오후	Microsoft Excel	1,030KB			
라이브러리	R21	2013-05-02 오후	Microsoft Excel	372KB			
문서) R-22최종냉매값	2013-04-19 오후	Microsoft Excel	833KB			
🗄 비디오 💡	(표) R23최종냉매값	2013-04-19 오후	Microsoft Excel	764KB			
📓 사진	🗐 R50	2013-04-19 오후	Microsoft Excel	1,231KB			
👌 음악	🗐 R113	2013-05-02 오전	Microsoft Excel	1,077KB			
	R114	2013-04-19 오후	Microsoft Excel	962KB			
컴퓨터	R123	2013-05-02 오전	Microsoft Excel	540K8			
🏭 로컬 디스크 (C:)	R134a	2013-04-19 오후	Microsoft Excel	821KB			
🗔 로컬 디스크 (D:)	R152a	2013-05-02 모후	Microsoft Excel	459KB			
BD-ROM 드라이	(III) R170	2013-04-19 오후	Microsoft Excel	877KB			
	🗐 R290	2013-04-19 오후	Microsoft Excel	961KB			
. 네트워크 *	图1 R401A	2013-05-02 夕志	Microsoft Excel	928KB		*	

- iv) Control
- a) Digital output

2 Click"Digital output"

🔪 🛍 View 🛛 🧳 Setting	Control
	PLC emulator
Temp Press	🦉 Digital output
Graph	🐵 Temp, Pressure
Low Pressure Liquid + Vepor Low Pressure Vapor	Temp 13

③ Digital output is the second comp by number And to the switch ON / OFF


When you work with equipment to

Operating the stand relay and The operation or without through the lamp

Function to determine

④ Green circle (comp) top
 Numbers are located on the
 control panel
 Comp 1 from above

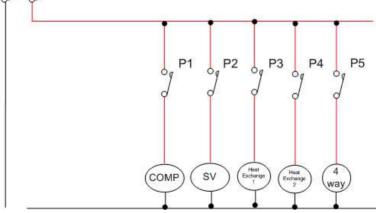
Side picture is circuit diagram of Digital output

5

6

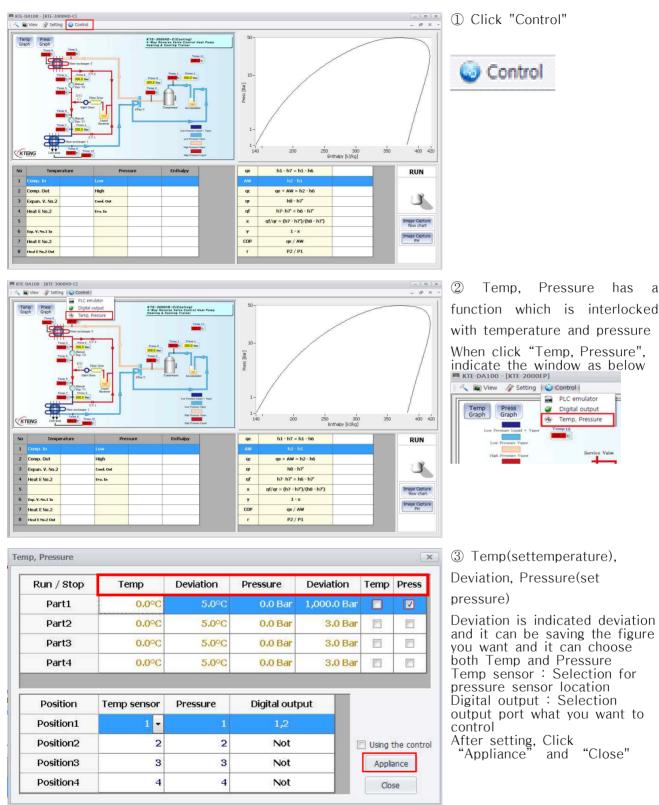
7

8


9

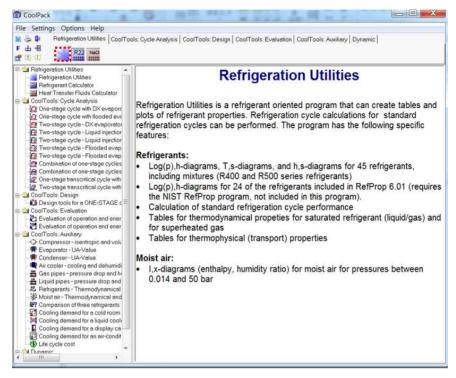
10

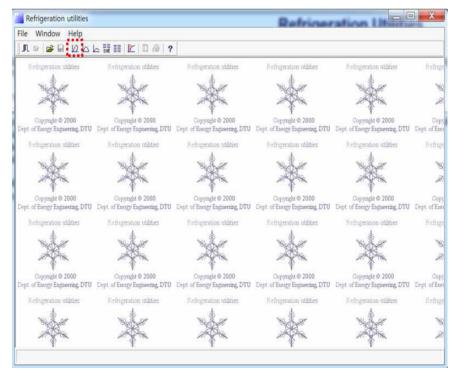
2


3

4

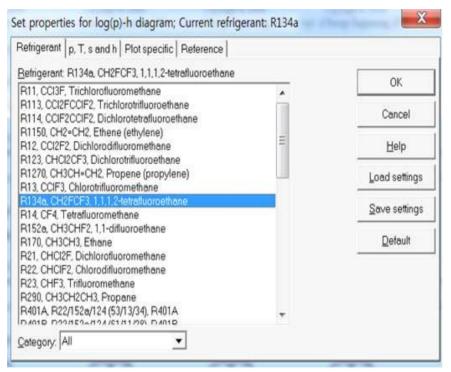
b) Temp, Pressure

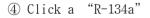

а


4-2. Drawing a P-h diagram (Coolpack)

1. Refrigerant Utilities

① Click "Refrigeration Unitilties"

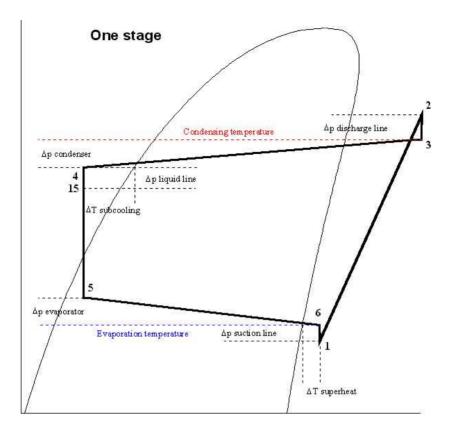



② Click a P-h diagram



- KTE-3000HD : R-134a

- Click "Cycle"



⑤ Cycle input

Cycle input						
Select cycle type: © One stage © Two stage, open inte Cycle name:	rcooler (e, closed intercooler e, open intercooler, load at in	termedia	ite pressure Draw cycle	Cycle creation E dit cycle
Values:						Calculated:
\underline{E} vaporating temperature:	0.00	캜 💌	Condensing temperature:	0.00	캜 💌	Qe [kJ/kg]:
Sugerheat:	0.00	К 🕶	Su <u>b</u> cooling:	0.00	К 💌	10000.000
Dp evaporator:	0.00	Bar 💌	Dp condenser:	0.00	Bar 💌	Qc (kJ/kg):
Dp suction line:	0.00	Bar 💌	Dp liquid line:	0.00	Bar 💌	10000.00
Dp discharge line:	0.00	Bar 💌				COP: 2.34
Isentropic efficiency [0-1]:	1.00	Q loss				W [kJ/kg] 10000.00
						W high [kW]
						10000.00
						(m high)/(m low 0.00000000
						m low [kg/s]:
						0.00000000
	ĺ.	÷ 1	and the second	. 11		m high [kg/s]:
Draw cycle Show inf	0 <u>Co</u>	py cycle	Paste cycle Canc	el _	Help	0.00000000

- 2. How to applicate the program
 - (1) Choose your respecting refrigeration system cycle on 'Select cycle type'
 - ① One stage cycle
 - ② Two stage cycle
 - (2) Evaporating Temperature ($^{\circ}$) or evaporating pressure (bar) on running.
 - (3) Condensing Temperature ($^{\circ}$ C) or condensing pressure (bar) on running.
 - (4) Superheat : Superheating temperature (°K) from outlet of evaporator to inlet of compressor.
 - (5) Sub Cooling : Sub cooling temperature (°K) from outlet of condenser (or saturating line on p-h chart) to in front of expansion valve.
 - (6) DP Evaporator : Temperature (or pressure) Difference between outlet of expansion valve and outlet of evaporator.
 - (7) DP Condenser : Temperature (or pressure) Difference between inlet of condenser and inlet of expansion valve.
 - (8) DP Suction line : Temperature (or pressure) Difference between outlet of evaporator and inlet of compressor.
 - (9) DP Liquid line : Temperature (or pressure) Difference at inlet of expansion valve after isolation expansion process.
 - (10) DP Discharge line : Temperature (or pressure) Difference between outlet of compressor and inlet of condenser.
 - (11) P-h Diagram

3. Refrigeration cycle and P-h diagram

(1) Refrigeration cycle

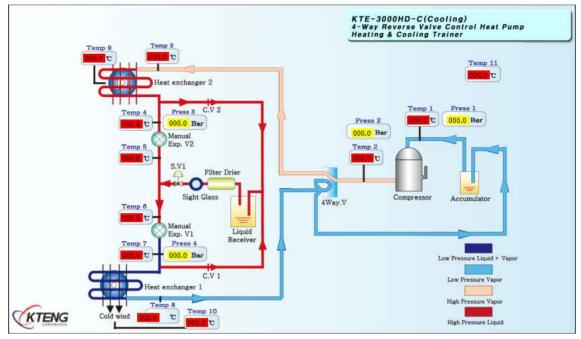


Fig. 4-1. KTE-3000HD Diagram (Cooling Mode)

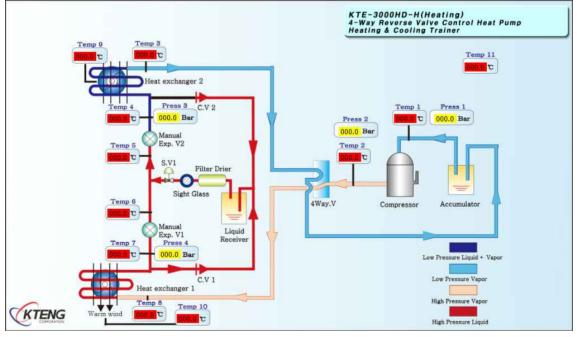


Fig. 4-2. KTE-3000HD Diagram (Heating Mode)

(2) P-h diagram

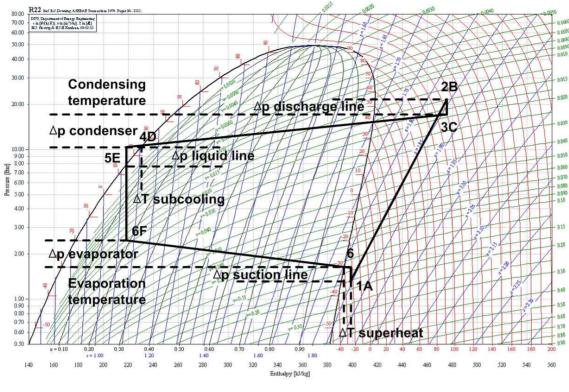


Fig. 4-2. P-h Diagram

(3) Drawing P-h diagram

1) Data Table

Table 4-1. Data Table

Data point	Table1	Table2	Table3	Table4	Table5	Remark
Evaporation Temperature						
Superheat						
DP Evaporator						
DP Suction line						
DP Discharge						
Condensing Temperature						
Sub Cooling						
DP Condenser						
DP Liquid Line						

2) Calculate heat amount and performance note Table

Oper Station	Compression Ratio	Refrigerating Effect		condensation Capacity		СОР	Work by Compressor	
_		KJ/kg	Kcal/kg	KJ/kg	Kcal/kg		Kcal/kg	
Table1								
Table2								
Table3								
Table4								
Table5								

Table 4-2. Calculating of heat amount and Note Table of performance

4. Example drawing a P-h diagram

(1) Data measuring_Variable evaporation Temp

Table 4-3. Data measurement

Data point	Table1	Table2	Table3	Remark
Evaporation Temp	-15 °C	-10 °C	-5℃	
Condensing Temp	40 °C	40 °C	40 °C	
Isentropic efficiency	1	1	1	
Qe [kJ/kg]	132.157	135.161	138.124	
Qc [kJ/kg]	169.933	168.734	167.675	
СОР	3.5	4.03	4.67	
W [kJ/kg]	37.775	33.573	29.551	
Pressure Ratio	6.193	5.063	4.176	

(2) Data measuring_Variable Condensing Temp

Table 4-4. Data measurement

Data point	Table1	Table2	Table3	Remark
Evaporation Temp	-15 °C	-15 °C	-15 °C	
Condensing Temp	40 °C	30 °C	20 °C	
Isentropic efficiency	1	1	1	
Qe [kJ/kg]	132.157	146.855	161.083	
Qc [kJ/kg]	169.933	178.744	186.662	
СОР	3.5	4.61	6.30	
W [kJ/kg]	37.775	31.889	25.578	
Pressure Ratio	6.193	4.692	3.483	

(3) Drawing solution P-h diagram

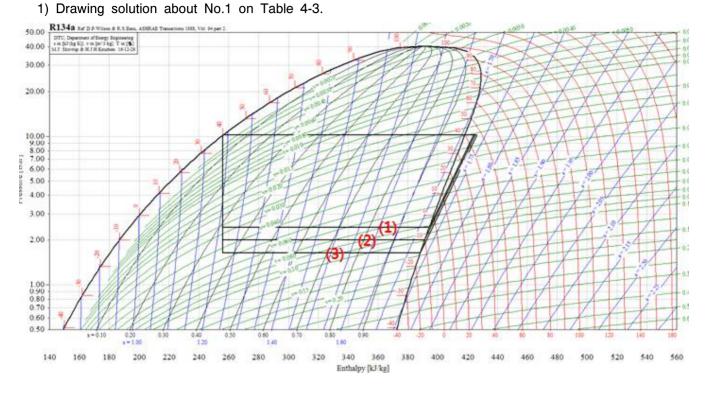
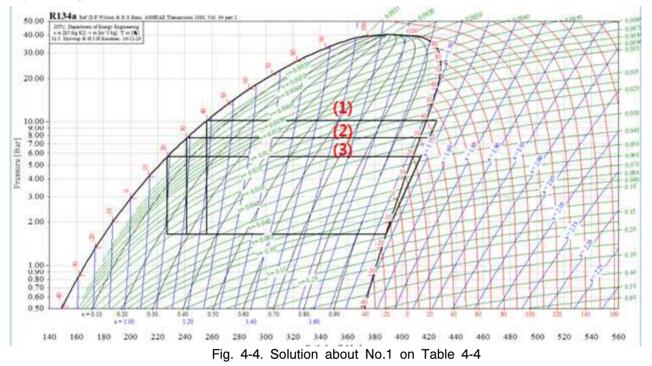



Fig. 4-3. Solution about No.1 on Table 4-3

2) Drawing solution about No.1 on Table 4-4.

3) Note a performance test result

Table 4-5. Note a performance test result

Oper Station Compression Rati	Compression Ratio	Refrigerating Effect		condensation Capacity		СОР	Work by Compressor	
	compression raute	KJ/kg	Kcal/kg	KJ/kg	Kcal/kg	001	Kcal/kg	
Table1								
Table2								
Table3								
Table4								
Table5								

3) Drawing each P-h diagram as each refrigerant

- (1) Condition
 - 1) Evaporating temperature : $-15\,^\circ\!\!\mathrm{C}$
 - 2) Condensing temperature : 30° C
 - 3) Temperature at inlet of compressor: -15 $^\circ\!\!\!\mathrm{C}\,(\mathrm{Dry}\;\mathrm{gas})$
 - 4) Temperature at inlet of expansion valve: -25°C(sub-cooling temp. 5°C)

(2) Formula

- 1) Refrigeration ability (Qe) = h_{a} h_{e}
- 2) Compressor work (W) = $h_b h_a$
- 3) Condensing load (Qc) = $h_b h_e$ = Qe + W
- 4) Coefficient of performance (COP) = Qe/W
- 5) Compression Ratio (Pr) = P_2/P_1
- (3) Comparing each Coefficient of performance as each refrigerant

Refrigerant	Qe	Qc	СОР	W	Pr
R-11 (CCI3F, Trichlorofluoromethane)	159.749	190.663	5.17	30.914	6.191
R-113 (CCI2FCCIF2, Trichlorotrifluoroethane)	129.450	154.908	5.08	25.457	8.005
R-114 (CCIF2CCIF2, Dichlorotetrafluoroethane)	103.463	124.941	4.82	21.478	5.372
R-12 (CCI2F2, Dichlorodifluoromethane)	121.284	146.024	4.90	24.740	4.079
R-123 (CHCI2CF3, Dichlorotrifluoroethane)	147.310	176.082	5.12	28.772	6.885
R-1270 (CH3CH=CH2, Propene (propylene))	300.752	363.752	4.77	63.001	3.588
R-134a (CH2FCF3,1,1,1,2-tetrafluoroethane)	154.023	185.913	4.83	31.889	4.692
R-152a (CH3CHF2,1,1-difluoroethane)	254.328	304.795	5.04	50.467	4.530
R-170 (CH3CH3, Ethane)	198.987	258.244	3.36	59.257	2.883
R-21 (CHCI2F, Dichlorofluoromethane)	198.987	258.244	3.36	59.257	2.883
R-22 (CHCIF2, Chlorodifluoromethane)	169.243	204.180	4.84	34.937	4.031
R-290 (CH3CH2CH3, Propane)	293.156	354.359	4.79	61.203	3.717
R-401A, R22/152a/124 (53/13/34), R401A	173.946	209.582	4.88	35.635	4.597
R-401B, R22/152a/124 (61/11/28), R401B	174.475	210.351	4.86	35.876	4.527
R-401C, R22/152a/124 (33/15/52), R401C	167.261	201.184	4.93	33.923	4.742
R-402A, R125/290/22 (60/2/38), R402A	121.226	147.912	4.54	26.686	3.881
R-402B, R125/290/22 (38/2/60), R402B	139.268	169.072	4.67	29.804	3.930
R-404A, R125/143a/134a (44/52/4), R404A	122.321	149.700	4.47	27.379	3.895
R-406A, R22/142b/600a (55/41/4), R406A	197.305	234.413	5.32	37.108	4.632
R-407A, R32/125/134a (20/40/40), R407A	160.990	195.456	4.67	34.466	4.390
R-407B, R-32/125/134a (10/70/20)	126.736	154.856	4.51	28.119	4.198
R-407C, R-32/125/134a (23/25/52)	175.779	212.765	4.75	36.987	4.468
R-408A, R22/143a/125 (47/46/7)	155.205	195.115	3.89	39.909	3.957
R-409A, R22/124/142b (60/25/15)	169.267	210.536	4.10	41.269	4.601
R-410A, R32/125 (50/50)	176.684	214.942	4.62	38.259	3.862
R-410B, R32/125 (45/55)	168.311	204.736	4.62	36.426	3.908
R-500, R12/152a (73.8/26.2)	147.010	177.105	4.88	30.095	4.105
R-502, R-22/115 (48.8/51.2)	110.620	134.616	4.61	23.996	3.784
R-507, R-125/143a (50/50)	125.721	152.951	4.62	27.229	3.852
R-600 (CH3CH2CH2CH3, Butane)	301.166	361.834	4.96	60.667	4.977
R-600a (CH(CH3)3, 2-methyl propane (isobutane))	277.180	333.691	4.90	56.511	4.560
R-717 (NH3, Ammonia)	1127.528	1358.669	4.88	231.141	4.940
R-718 (H20, Water)	2369.155	2959.889	4.01	590.734	25.687
R-744 (C02, Carbon dioxide)	161.693	210.777	3.29	49.084	3.143
RC318 (C4F8, Octafluorocyclobutane)	43.696	60.481	2.60	16.785	5.386

Table 4-6. Comparing each Coefficient of performance as each refrigerant

Chapter 5. Notice and Guarantee

1. Mechanical trouble and measures

- 1-1. When the Power lamp does not connect
- (1) If the power lamp do not work when the N.F.B turn on. Please check inserts a power cord in the reverse side of N.F.B or installation in power input.

Check the AC LAMP is turn on

Installed the N.F.B on reverse side of control panel

- ① Check the power cord is put in on reverse side.
- 2 Check the power cord is plug in.

1-2. When the temperature module is power off

* If temperature module power is OFF like above

Reverse side of temp module panel

Installing the N.F.B on back side of control panel

- ① Check the power cord is put in on reverse side.
- 2 Check extension connected the power cord through extension cable.
- 1-3. When trouble of the other parts
- (1) Contact us when Operation of other parts is strange or out of work. Then we will handle rapidly.

2. Caution Notice on operation

- 2-1. Power Supply
- (1) Main power of this equipment is use a single phase AC 220V.
- (2) After equipment action order turns on N.F.B and watches circuit diagram and finishes wiring by RCA cable in proposition that power cord was counted, DC toggle switch does on.
- (3) Use RCA cable and power supply at equipment operate secures because use DC 24V, but should observe to +, mixing use of monad as operating power is DC.
- (4) Also, base and control panel of equipment is all aluminum quality of the material when interlink red + terminal, should take care not to reach in aluminum base.

2-2. Machine Equipment

- (1) When using a charging nipple installed at low pressure and high pressure side of, notice refrigerant not to leak.
- (2) Use after making sure how to use well exactly operating a manual expansion valve .
- (3) When going out of factory, super heating and sub cooling are set up 5±2℃, but as your continue using the setting value will be changed.
- (4) Notice fragile arcrylic duct of evaporator for visual inside. Be careful not to break it.
- (5) If you separate any component of product by yourself, the system gets damage and you never get A/S from us.
- 2-3. Data Acquisition device and Software
- (1) After set up circuit of electric panel on the main equipment, connect Data Acquisition device and computer. Check if the cable is connected correct, turn on the switch on panel.(* Please follow step by step as manual book.)
- 2-4. Else
- (1) After reading the manual book, operate the system.
- (2) If you have any question, call us.

Renewable Energy / Refrigeration & Air-conditioning & Welding Automation controls(PLC) / Robot controls / Electric & Electronics(LED lighting) Firefighting & safety / Big data & ICT / Automobile & ship / Nano chemical

KTENG Co., Ltd. TEL: 82-31-749-5373 | FAX: 82-31-749-5376 overseas@kteng.com | http://www.kteng.com 11, Meorusut-gil, Opo-eup, Gwangju-si, Gyeonggi-do, 12771, South Korea